
Looking Beneath the
Surface of Sorting

Andrew T. Kuligowski
HSN

• INTRODUCTION

• SORTING – THE BASICS

• WHAT IS “NUMERICAL ORDER”?

• SORTING ALPHANUMERIC CHARACTERS /
VARIATIONS IN OPERATING SYSTEMS?

• SPACE CONCERNS

2

Introduction

Looking Beneath the Surface of Sorting

• SELECTIVE RECORD RETENTION and
TIEBREAKERS

• ALTERNATIVES TO SORTING

• SYSTEM OPTIONS RELATED TO SORTING

• CONCLUSION

3

Introduction

Looking Beneath the Surface of Sorting

sort [sOrt] To arrange into some
order, especially numerically,
alphabetically or chronologically. From
Old French sortir (“allot, sort”), from
Latin sortiri (“draw lots, divide, choose”)

4

Sorting – the Basics

Looking Beneath the Surface of Sorting

Basics of sorting:

• Name of input dataset.
• Variable(s) to be sorted.

PROC SORT DATA=< DatasetName >;

BY Variable1 < Variable2 … >;

RUN;

5

Sorting – the Basics

Looking Beneath the Surface of Sorting

A slightly more complicated sort:

• Name of output dataset (if different).
• Direction of sort for each variable.

PROC SORT DATA=< DatasetName >

 OUT=< OutputDatasetName >;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

6

Sorting – the Basics

Looking Beneath the Surface of Sorting

This is sorting in SAS at its most basic level.

(Everyone who was simply looking for
a high level overview can leave now …)

(Then again, I assume everyone in the room
covered this in their Intro to SAS class – early
in their Intro to SAS class – and is expecting
some additional details!)

7

Sorting – the Basics

Looking Beneath the Surface of Sorting

Numerical Order
(A refresher from elementary school …)

I think everyone in the room can count,
forwards and backwards … some in several
different languages!

Positive numbers are higher than negative
numbers, with zero falling between them.

What about missing values ???
8

What is “numerical order”?

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

9

What is “numerical order”?

 Orig RandomPos

Obs Order NegMiss

 1 1 1

 2 3 2

 3 8 4

 4 11 3

 5 14 -1

 6 17 5

 7 19 -3

 8 20 .

 9 22 -5

10 27 -4

11 78 -2

 Orig RandomPos

Obs Order NegMiss

 1 20 .

 2 22 -5

 3 27 -4

 4 19 -3

 5 78 -2

 6 14 -1

 7 1 1

 8 3 2

 9 11 3

10 8 4

11 17 5

����
SORT

Missing Values

Looking Beneath the Surface of Sorting

So, missing values are the smallest
“number” that we have.

What about Special Missing Values?

10

What is “numerical order”?Missing Values

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

11

What is “numerical order”?

 Orig RandomPos
Obs Order NegMiss

 1 1 1

 2 3 2

 3 10 M

 4 11 3

 5 14 -1

 6 19 -3

 7 20 .

 Orig RandomPos

Obs Order NegMiss

 1 85 _

 2 20 .

 3 65 A

 4 10 M

 5 27 -4

 6 19 -3

 7 78 -2

����
SORT

Special Missing Values

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

12

What is “numerical order”?

 Orig RandomPos
Obs Order NegMiss

 1 1 1

 2 3 2

 3 10 M

 4 11 3

 5 14 -1

 6 19 -3

 7 20 .

 Orig RandomPos

Obs Order NegMiss

 1 85 _

 2 20 .

 3 65 A

 4 10 M

 5 27 -4

 6 19 -3

 7 78 -2

Special Missing Values

The underscore is lowest.
Then comes “normal” missing value.
Finally, comes alpha characters A – Z.

Looking Beneath the Surface of Sorting

Sorting Alphanumeric Characters
(Another refresher from elementary school …)

13

Sorting Alphanumeric Characters /
Variations in Operating Systems

A GE FDCB

a ge fdcb

>+ <*%@

(But did Big Bird discuss the difference
between upper and lower case letters?)

(And what about “special characters”?)

Looking Beneath the Surface of Sorting

• Lower case before upper case.

• Upper case before digits.

• Both lower case and upper case letter
sequences interrupted by special characters.

16

Sorting Alphanumeric Characters /
Variations in Operating Systems

Sorting Alphanumeric Characters
EBCDIC (Z/OS i.e. “mainframes”)

Looking Beneath the Surface of Sorting

<blank> . < (+ | & ! $ *) ; ¬

 - / , % _ > ?: # @ ' = “

a b c d e f g h i j k l m

n o p q r ~ s t u v w x y z

{ A B C D E F G H I } J K L

M N O P Q R \ S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9
17

Sorting Alphanumeric Characters /
Variations in Operating Systems

Sorting Alphanumeric Characters
EBCDIC (Z/OS i.e. “mainframes”)

Looking Beneath the Surface of Sorting

• Digits before upper case.

• Upper case before lower case.

• Some special characters before digits, some
after digits but before alphas, some after upper
case, rest after lower case. No special
characters interrupt the alphabetic sequences.

18

Sorting Alphanumeric Characters /
Variations in Operating Systems

Sorting Alphanumeric Characters
ASCII (Unix & derivatives, Windows, OpenVMS)

Looking Beneath the Surface of Sorting

<blank> ! " # $ % & ' () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ˆ _

a b c d e f g h i j k l m n

o p q r s t u v w x y z { } ~
19

Sorting Alphanumeric Characters /
Variations in Operating Systems

Sorting Alphanumeric Characters
ASCII (Unix & derivatives, Windows, OpenVMS)

Looking Beneath the Surface of Sorting

Sorting Alphanumeric Characters
ASCII (Unix & derivatives, Windows, OpenVMS)

So … sort results for alphanumeric characters will
return different output on a mainframe and on a PC.

This is an exception to the philosophy of
“transparent results across operating

systems”!!

20

Sorting Alphanumeric Characters /
Variations in Operating Systems

Looking Beneath the Surface of Sorting

Sorting Alphanumeric Characters
ASCII (Unix & derivatives, Windows, OpenVMS)

Philosophical question :

Which do you prefer?
•100% fully compatible results across operating systems?

Or
•Should SAS be consistent with other applications on a

given operating system?

You Can Have BOTH !!!
21

Sorting Alphanumeric Characters /
Variations in Operating Systems

Looking Beneath the Surface of Sorting

Sorting Alphanumeric Characters
ASCII (Unix & derivatives, Windows, OpenVMS)

By Default, SAS will sort using the appropriate
character set for the operating system.

Or

You can override the default for your operating system
by using the ASCII or EBCDIC keyword (as
appropriate) on PROC SORT!

22

Sorting Alphanumeric Characters /
Variations in Operating Systems

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

ASCII vs. EBCDIC
Sorting Alphanumeric Characters /

Variations in Operating Systems

Looking Beneath the Surface of Sorting 23

PROC SORT DATA=AscEbc

 EBCDIC;

 BY OneByte;

RUN;

Obs AByte Obs AByte

 1 11 a

 2 . 12 f

 3 < 13 [

 4 $ 14]

 5 ; 15 {

 6 , 16 A

 7 _ 17 F

 8 > 18 }

 9 # 19 0

10 @ 20 1

 21 9

PROC SORT DATA=AscEbc

 ASCII ;

 BY AByte;

RUN;

Obs AByte Obs AByte

 1 11 >

 2 # 12 @

 3 $ 13 A

 4 , 14 F

 5 . 15 [

 6 0 16]

 7 1 17 _

 8 9 18 a

 9 ; 19 f

10 < 20 {

 21 }

Let’s find out via experimentation.

ASCII vs. EBCDIC
Sorting Alphanumeric Characters /

Variations in Operating Systems

Looking Beneath the Surface of Sorting

PROC SORT DATA=AscEbc

 EBCDIC ;

 BY OneByte;

RUN;

Obs AByte Obs AByte

 1 11 a

 2 . 12 f

 3 < 13 [

 4 $ 14]

 5 ; 15 {

 6 , 16 A

 7 _ 17 F

 8 > 18 }

 9 # 19 0

10 @ 20 1

 21 9 24

PROC SORT DATA=AscEbc

 ASCII ;

 BY AByte;

RUN;

Obs AByte Obs AByte

 1 11 >

 2 # 12 @

 3 $ 13 A

 4 , 14 F

 5 . 15 [

 6 0 16]

 7 1 17 _

 8 9 18 a

 9 ; 19 f

10 < 20 {

 21 }

Using the appropriate keywords, the
end results will be consistent

regardless of the machine / operating
system used.

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

How many people in the room are NOT from
the United States or Canada?

(OK, everyone from Great Britain, Australia,
and New Zealand, put your hands down, too.)

25

ASCII vs. EBCDIC
Sorting Alphanumeric Characters /

Variations in Operating Systems

Looking Beneath the Surface of Sorting

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

Scandinavians might be interested in this!

PROC SORT DATA=< DatasetName >

 SWEDISH ;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

26

or
NORWEGIAN

or
DANISH

or
FINNISH

Collating
Sequences

Sorting Alphanumeric Characters /
Variations in Operating Systems

Sorry
, n

o

IC
EL
AN
DI
C

or F
AR
OE
SE

Looking Beneath the Surface of Sorting

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

Scandinavians might be interested in this!

PROC SORT DATA=< DatasetName >

 SORTSEQ=SWEDISH ;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

27

Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, …
or

SPANISH

or
NORWEGIAN

or
DANISH

or
FINNISH

Sorting Alphanumeric Characters /
Variations in Operating Systems

or
ITALIAN

or
POLISH

(ver 9.2)

Collating
Sequences

Looking Beneath the Surface of Sorting

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

Scandinavians might be interested in this!

PROC SORT DATA=< DatasetName >

 SORTSEQ=SWEDISH ;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

28

Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, …
or

SPANISH

or
NORWEGIAN

or
DANISH

or
FINNISH

Sorting Alphanumeric Characters /
Variations in Operating Systems

or
ITALIAN

or
POLISH

(ver 9.2)

How did Scandinavia get first dibs?

I suspect … they offered the Powers-That-Be
at SAS something that no one else could …

Collating
Sequences

Looking Beneath the Surface of Sorting

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

Scandinavians might be interested in this!

PROC SORT DATA=< DatasetName >

 SORTSEQ=SWEDISH ;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

29

Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, …
or

SPANISH

or
NORWEGIAN

or
DANISH

or
FINNISH

Sorting Alphanumeric Characters /
Variations in Operating Systems

or
ITALIAN

or
POLISH

(ver 9.2)

What if your preferred sort sequence
still isn’t available?

PROC TRANTAB can create, edit
and/or display a customized translation

table.

(Looks like our friends from
Iceland and the Faroe Islands

might be alright, after all!)

Collating
Sequences

Looking Beneath the Surface of Sorting

Oh, and if that wasn’t enough, … let’s throw
one more complicating factor into the mix!

Scandinavians might be interested in this!

PROC SORT DATA=< DatasetName >

 SORTSEQ=SWEDISH ;

 BY < DESCENDING > Variable1

 << DESCENDING > Variable2 … >;

RUN;

30

Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, … Europeans, Central and South Americans, …
or

SPANISH

or
NORWEGIAN

or
DANISH

or
FINNISH

Sorting Alphanumeric Characters /
Variations in Operating Systems

or
ITALIAN

or
POLISH

(ver 9.2)

What if your preferred sort sequence
still isn’t available?

PROC TRANTAB can create, edit
and/or display a customized translation

table.

(Looks like our friends from
Iceland and the Faroe Islands

might be alright, after all!)

For the record, only one
collating sequence is

allowed per unique SORT.

(which makes sense … why
would you want to sort by
both Finnish AND Polish at

the same time?)

Collating
Sequences

Looking Beneath the Surface of Sorting

Intertwining Upper and Lower Case

Both EBCDIC and ASCII group all 26 upper
case letters and all 26 lower case letters
together (even if they can’t agree on which
comes first).

Who wants to have them sorted intertwined?

31

Sorting Alphanumeric Characters /
Variations in Operating Systems

Collating
Sequences

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

32

 Three
 Orig Letter

Obs Order Mixed

 4 4 MZx

 20 20 MJv

 42 42 mVX

 44 44 MPY

 62 62 mCA

140 140 MfE

143 143 MWz

159 159 Mda

187 187 MEq

191 191 moU

Sorting Alphanumeric Characters /
Variations in Operating Systems

Collating
Sequences

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

33

 Three
 Orig Letter

Obs Order Mixed

 4 4 MZx

 20 20 MJv

 42 42 mVX

 44 44 MPY

 62 62 mCA

140 140 MfE

143 143 MWz

159 159 Mda

187 187 MEq

191 191 moU

Sorting Alphanumeric Characters /
Variations in Operating Systems

Collating
Sequences

PROC SORT DATA=SampData(KEEP=OrigOrder ThreeLetterMixed)

 OUT=TempMixed;

BY ThreeLetterMixed ;

RUN;

PROC PRINT DATA=TempMixed(

 WHERE=(UPCASE(SUBSTR(ThreeLetterMixed,1,1))='M'))

 UNIFORM;

RUN;

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

34

PROC SORT DATA=SampData(KEEP=OrigOrder ThreeLetterMixed)

 OUT=TempMixed;

BY ThreeLetterMixed ;

RUN;

PROC PRINT DATA=TempMixed(

 WHERE=(UPCASE(SUBSTR(ThreeLetterMixed,1,1))='M'))

 UNIFORM;

RUN;

 Three
 Orig Letter

Obs Order Mixed

 46 187 MEq

 47 20 MJv

 48 44 MPY

 49 143 MWz

 50 4 MZx

 51 159 Mda

 52 140 MfE

187 62 mCA

188 42 mVX

189 191 moU

Sorting Alphanumeric Characters /
Variations in Operating Systems

Collating
Sequences

 Three
 Orig Letter

Obs Order Mixed

 4 4 MZx

 20 20 MJv

 42 42 mVX

 44 44 MPY

 62 62 mCA

140 140 MfE

143 143 MWz

159 159 Mda

187 187 MEq

191 191 moU

����
SORT

Looking Beneath the Surface of Sorting

Note that UPPER CASE
comes before lower case.
This indicates that the sort
must have been done in
ASCII.

Intertwining Upper and Lower Case

Let’s add a variable that contains the same
content as our character string, only with all
fields converted to upper case. Then, sort by
THAT field instead of the original one.

35

Sorting Alphanumeric Characters /
Variations in Operating Systems

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

36

DATA Temp2;

 SET SampData(KEEP=OrigOrder

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps ;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

Sorting Alphanumeric Characters /
Variations in Operating Systems

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

37

DATA Temp2;

 SET SampData(KEEP=OrigOrder Random500

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps ;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

 Three Three
 Orig Letter Letter

Obs Order Mixed Caps

109 62 mCA MCA

110 159 Mda MDA

111 187 MEq MEQ

112 140 MfE MFE

113 20 MJv MJV

114 191 moU MOU

115 44 MPY MPY

116 42 mVX MVX

117 143 MWz MWZ

118 4 MZx MZX

Sorting Alphanumeric Characters /
Variations in Operating Systems

 Three Three
 Orig Letter Letter

Obs Order Mixed Caps

 4 4 MZx MZX

 20 20 MJv MJV

 42 42 mVX MVX

 44 44 MPY MPY

 62 62 mCA MCA

140 140 MfE MFE

143 143 MWz MWZ

159 159 Mda MDA

187 187 MEq MEQ

191 191 moU MOU

����
SORT

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Intertwining Upper and Lower Case

That was an easy fix! Except …

a) It added an extra DATA step to the routine.
i.e. extra clock time and extra CPU time

b) It added an extra variable to our dataset.
i.e. extra disk space

38

Sorting Alphanumeric Characters /
Variations in Operating Systems

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Intertwining Upper and Lower Case

Can we accomplish the same thing without the
extra overheads in time and space (i.e. $$$)?

Version 9.1 no

Version 9.2 yes

39

Sorting Alphanumeric Characters /
Variations in Operating Systems

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

40

DATA Temp2;

 SET SampData(KEEP=OrigOrder

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

Sorting Alphanumeric Characters /
Variations in Operating Systems

SampData SORTSEQ=linguistic ;

ThreeLetterMixed ;

ThreeLetterMixed

SampData

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

41

DATA Temp2;

 SET SampData(KEEP=OrigOrder

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

Sorting Alphanumeric Characters /
Variations in Operating Systems

SampData SORTSEQ=linguistic ;

ThreeLetterMixed ;

ThreeLetterMixed

SampData ;

PROC SORT DATA=SampData SORTSEQ=linguistic;

BY ThreeLetterMixed ;

RUN;

PROC PRINT DATA=SampData(

 WHERE=(SUBSTR(ThreeLetterMixed,1,1)='M'))

 UNIFORM;

RUN;

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

42

DATA Temp2;

 SET SampData(KEEP=OrigOrder

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps ;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

Sorting Alphanumeric Characters /
Variations in Operating Systems

SampData SORTSEQ=linguistic ;

ThreeLetterMixed ;

ThreeLetterMixed

SampData ;

PROC SORT DATA=SampData SORTSEQ=linguistic;

BY ThreeLetterMixed ;

RUN;

PROC PRINT DATA=SampData(

 WHERE=(SUBSTR(ThreeLetterMixed,1,1)='M'))

 UNIFORM;

RUN;

 Three
 Orig Letter

Obs Order Mixed

109 62 mCA

110 159 Mda

111 187 MEq

112 140 MfE

113 20 MJv

114 191 moU

115 44 MPY

116 42 mVX

117 143 MWz

118 4 MZx

 Three
 Orig Letter

Obs Order Mixed

 4 4 MZx

 20 20 MJv

 42 42 mVX

 44 44 MPY

 62 62 mCA

140 140 MfE

143 143 MWz

159 159 Mda

187 187 MEq

191 191 moU

����
SORT

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

43

DATA Temp2;

 SET SampData(KEEP=OrigOrder

 ThreeLetterMixed ThreeLetterCaps);

 ThreeLetterCaps = UPCASE(ThreeLetterMixed);

RUN;

PROC SORT DATA=Temp2 ;

BY ThreeLetterCaps ;

RUN;

PROC PRINT DATA=Temp2(

 WHERE=(SUBSTR(ThreeLetterCaps,1,1)='M'))

 UNIFORM;

RUN;

Sorting Alphanumeric Characters /
Variations in Operating Systems

SampData SORTSEQ=linguistic ;

ThreeLetterMixed ;

ThreeLetterMixed

SampData ;

PROC SORT DATA=SampData SORTSEQ=linguistic;

BY ThreeLetterMixed ;

RUN;

PROC PRINT DATA=SampData(

 WHERE=(SUBSTR(ThreeLetterMixed,1,1)='M'))

 UNIFORM;

RUN;

 Three
 Orig Letter

Obs Order Mixed

109 62 mCA

110 159 Mda

111 187 MEq

112 140 MfE

113 20 MJv

114 191 moU

115 44 MPY

116 42 mVX

117 143 MWz

118 4 MZx

 Three
 Orig Letter

Obs Order Mixed

 4 4 MZx

 20 20 MJv

 42 42 mVX

 44 44 MPY

 62 62 mCA

140 140 MfE

143 143 MWz

159 159 Mda

187 187 MEq

191 191 moU

����
SORT

Intertwining Upper
and Lower Case

The SAS 9.2 documentation
states that the LINGUISTIC
option on SORTSEQ “are

largely compatible with” the
Unicode Collation
Algorithms (UCA).

The converse is that they
are not 100% compatible

with UCA – make a note, in
case this is of concern.

Looking Beneath the Surface of Sorting

Character data containing numbers

How does the following data sort?

44

Sorting Alphanumeric Characters /
Variations in Operating Systems

Intertwining Upper
and Lower Case

Looking Beneath the Surface of Sorting

Numbers inside character data

45

Sorting Alphanumeric Characters /
Variations in Operating Systems

2 1 2744314

(if they’re stored as numbers)
1 27 431442

(if they’re stored as characters)
1 4 4327214

Numbers inside
character data

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

46

PROC SORT DATA=ADDRESSES

 OUT=ADDRESSES_CHAR ;

 BY ADDRESS ;

RUN;

Obs ADDRESS

 1 14 12th Street

 2 14 121st Street

 3 141 12th Street Apt 1

 4 141 12th Street Apt 11

 5 141 12th Street Apt 2

 6 141 121st Street

 7 1411 12th Street

Sorting Alphanumeric Characters /
Variations in Operating Systems

Obs ADDRESS

 1 1411 12th Street

 2 14 121st Street

 3 141 12th Street Apt 2

 4 14 12th Street

 5 141 121st Street

 6 141 12th Street Apt 11

 7 141 12th Street Apt 1

Numbers inside
character data

Looking Beneath the Surface of Sorting

Let’s find out via experimentation.

Looking Beneath the Surface of Sorting 47

PROC SORT DATA=ADDRESSES

 OUT=ADDRESSES_NUM

 SORTSEQ=linguistic(NUMERIC_COLLATION=ON);

 BY ADDRESS ;

RUN;

Obs ADDRESS

 1 14 12th Street

 2 14 121st Street

 3 141 12th Street Apt 1

 4 141 12th Street Apt 2

 5 141 12th Street Apt 11

 6 141 121st Street

 7 1411 12th Street

Sorting Alphanumeric Characters /
Variations in Operating Systems

Obs ADDRESS

 1 1411 12th Street

 2 14 121st Street

 3 141 12th Street Apt 2

 4 14 12th Street

 5 141 121st Street

 6 141 12th Street Apt 11

 7 141 12th Street Apt 1

Numbers inside
character data

Sorting can take a lot of disk space!

Aside: Picture a simple DATA Step:

DATA Temp2;

 SET Temp;

RUN;

DATA Temp;

 SET Temp;

RUN;

48

Space Concerns

Temp Temp2

Temp Temp

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!

Well, it’s worse with PROC SORT!

PROC SORT DATA=Temp;

 BY something;

RUN;

49

Space Concerns

Temp Temp

sort

work
Is there something we

can do to conserve
disk space?

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
1) Only bring along the variables you need!

DATA Temp2;

 SET Temp;

 DROP OldVar1 OldVar2;

RUN;

PROC SORT DATA=Temp

 OUT=Temp2;

 BY something;

RUN;

50

Space Concerns

(DROP=OldVar1 OldVar2);

(KEEP=GoodVar1-GoodVarX);

Range? Or List out?

(KEEP=GoodVar1-GoodVarX);

Why?

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
1) Only bring along the variables you need!
1a) Aside: You probably don’t want to do this …

1214 PROC SORT DATA=TEMP
1215 OUT=T3(DROP = RandomBool);
1216 BY RandomBool RandomPosNegMiss ;
1217 RUN;

NOTE: Input data set is already sorted; it has been
 copied to the output data set.

NOTE: There were 250 observations read from the
 data set WORK.TEMP.

NOTE: The data set WORK.T3 has 250 observations and
 5 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.76 seconds
 cpu time 0.03 seconds

51

Space Concerns

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
1) Only bring along the variables you need!
1a) Aside: You probably don’t want to do this …

1214 PROC SORT DATA=TEMP
1215 OUT=T3(DROP = RandomBool);
1216 BY RandomBool RandomPosNegMiss ;
1217 RUN;

NOTE: Input data set is already sorted; it has been
 copied to the output data set.

NOTE: There were 250 observations read from the
 data set WORK.TEMP.

NOTE: The data set WORK.T3 has 250 observations and
 5 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.76 seconds
 cpu time 0.03 seconds

52

Space Concerns

Looking at PROC CONTENTS …

The CONTENTS Procedure

Data Set Name WORK.T3 Observations 250

Member Type DATA Variables 5

Engine V9 Indexes 0

Created Tuesday, March 17, Observation Length 336

Last Modified Tuesday, March 17, Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

… … … … … …
NOT SORTED!!

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
1) Only bring along the variables you need!
1a) Aside: You probably don’t want to do this …

1214 PROC SORT DATA=TEMP
1215 OUT=T3(DROP = RandomBool);
1216 BY RandomBool RandomPosNegMiss ;
1217 RUN;

NOTE: Input data set is already sorted; it has been
 copied to the output data set.

NOTE: There were 250 observations read from the
 data set WORK.TEMP.

NOTE: The data set WORK.T3 has 250 observations and
 5 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.76 seconds
 cpu time 0.03 seconds

53

Space Concerns

Looking at PROC CONTENTS …

The CONTENTS Procedure

Data Set Name WORK.T3 Observations 250

Member Type DATA Variables 5

Engine V9 Indexes 0

Created Tuesday, March 17, Observation Length 336

Last Modified Tuesday, March 17, Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

… … … … … …
NOT SORTED!!

For the record, if we had
removed the secondary sort

variable instead of the
primary one, SAS would

continue to recognize that
the dataset was sorted by

that variable.

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
1) Only bring along the variables you need!
1b) Aside: You definitely don’t want to do this …

1224 PROC SORT DATA=TEMP(DROP = RandomBool)
1225 OUT=T4 ;
1226 BY RandomBool RandomPosNegMiss ;

ERROR: Variable RANDOMBOOL not found

1227 RUN;

NOTE: The SAS System stopped processing this step
 because of errors.

WARNING: The data set WORK.T4 may be incomplete.
 When this step was stopped there were
 0 observations and 0 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.04 seconds
 cpu time 0.00 seconds

54

Space Concerns

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
2) Only bring along the observations you need!

DATA Temp2;

 SET Temp;

 WHERE ThreeLetterUpOnly<="P" ;

RUN;

PROC SORT DATA=Temp

 OUT=Temp2;

 BY something;

RUN;

55

Space Concerns

Same deal … put your constraints
on the input data, not the output!

(WHERE=(ThreeLetterUpOnly<="P“));

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
3) SAS will watch your back for you! (Somewhat.)

1137 PROC SORT DATA=TEMP;

1138 BY RandomBool RandomPosNegMiss ;

1139 RUN;

NOTE: There were 250 observations read from
 the data set WORK.TEMP.

NOTE: The data set WORK.TEMP has 250 observations
 and 6 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.09 seconds
 cpu time 0.03 seconds

56

Space Concerns

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
3) SAS will watch your back for you! (Somewhat.)

1145 PROC SORT DATA=TEMP(WHERE=(ThreeLetterUpOnly<="P"))

1146 OUT=TEMP2;

1147 BY RandomBool RandomPosNegMiss ;

1148 /*** replace with other variables as needed ***/

1149 RUN;

NOTE: Input data set is already sorted; it has been copied
 to the output data set.

NOTE: There were 141 observations read from the data set
 WORK.TEMP.

 WHERE ThreeLetterUpOnly<='P';

NOTE: The data set WORK.TEMP2 has 141 observations and
 6 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.06 seconds
 cpu time 0.01 seconds

57

Space Concerns

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
3) SAS will watch your back for you! (Somewhat.)

1145 PROC SORT DATA=TEMP(WHERE=(ThreeLetterUpOnly<="P"))

1146 OUT=TEMP2;

1147 BY RandomBool RandomPosNegMiss ;

1148 /*** replace with other variables as needed ***/

1149 RUN;

NOTE: Input data set is already sorted; it has been copied
 to the output data set.

NOTE: There were 141 observations read from the data set
 WORK.TEMP.

 WHERE ThreeLetterUpOnly<='P';

NOTE: The data set WORK.TEMP2 has 141 observations and
 6 variables.

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.06 seconds
 cpu time 0.01 seconds

58

Space Concerns

Looking at PROC CONTENTS …

The CONTENTS Procedure

Data Set Name WORK.TEMP Observations 250

Member Type DATA Variables 6

Engine V9 Indexes 0

Created Tuesday, March 17, Observation Length 344

Last Modified Tuesday, March 17, Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted YES

… … … … … …
Sort Information

Sortedby RandomBool RandomPosNegMiss

Validated YES

Character Set ANSI

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
5) What if we overwrite the original dataset?

PROC SORT DATA=Temp OVERWRITE;

 BY something;

RUN;

59

Space Concerns

Temp Temp

sort

work
Question: What is the

biggest risk of sorting with
this option? Take a back-up first! (Which, of

course, requires more space …)
Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

PROC SORT has options that will remove
duplicate records from the output dataset.

NODUPRECS (a.k.a. NODUP)
NODUPKEY

60

Selective Record Retention and
Tiebreakers

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

NODUPRECS

Only keeps one occurrence if every variable on
consecutive observations has the same value.

(Aside: I normally use the NODUP alias, but the
full word is more explanatory.)

61

Selective Record Retention and
Tiebreakers

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

NODUPRECS

Only keeps one occurrence if every variable on
consecutive observations has the same value.

(Aside: I normally use the NODUP alias, but the
full word is more explanatory.)

62

Selective Record Retention and
Tiebreakers

The manual reminds us that the
only way to be absolutely certain
that every variable matches the
previous one is to sort by every

variable in the file.
Does that sound like overkill to

anyone else???

Looking Beneath the Surface of Sorting

63

Selective Record Retention and
Tiebreakers

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

NODUPKEYS

Only keeps first observation if every variable in
the sort sequence on consecutive observations
has the same value.

(Aside: Which keyword is plural and which one is not?
Another good reason to code “NODUP” instead of

“NODUPRECS”!)

64

Selective Record Retention and
Tiebreakers

Looking Beneath the Surface of Sorting

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

NODUPKEYS

Only keeps first observation if every variable in
the sort sequence on consecutive observations
has the same value.

(Aside: Which keyword is plural and which one is not?
Another good reason to code “NODUP” instead of

“NODUPRECS”!)

WARNING: Quoth the manual:

If you use the VMS operating
environment sort, then the

observation that is written to the
output data set is not always the

first observation of the BY group.

Sorting can take a lot of disk space!
6) What if we don’t bring over all the records!

DUPOUT=

Specifies the dataset to which duplicate observations

are written.

(Again, quoting the manual.)

Looking Beneath the Surface of Sorting 65

Selective Record Retention and
Tiebreakers

What if I have two or more observations with
the same values for their sort variables?

EQUALS and NOEQUALS

EQUALS (the default) maintains the order in which the
observations were brought in.

NOEQUALS does not.
Or to be more precise … might not.

Looking Beneath the Surface of Sorting 66

Selective Record Retention and
Tiebreakers

What if I have two or more observations with
the same values for their sort variables?

EQUALS and NOEQUALS

EQUALS is usually the preferred alternative.
(which is probably why it is the default!)

NOEQUALS will save processing time and CPU.

Looking Beneath the Surface of Sorting 67

Selective Record Retention and
Tiebreakers

What if I have two or more observations with
the same values for their sort variables?

EQUALS and NOEQUALS

EQUALS is usually the preferred alternative.
(which is probably why it is the default!)

NOEQUALS will save processing time and CPU.

68

Selective Record Retention and
Tiebreakers

Your choice between these two
options could have a significant
effect on which observations are

passed along / dropped when
using NODUP and NODUPKEY.

What if I have two or more observations with
the same values for their sort variables?

EQUALS and NOEQUALS

EQUALS is usually the preferred alternative.
(which is probably why it is the default!)

NOEQUALS will save processing time and CPU.

Looking Beneath the Surface of Sorting 69

Selective Record Retention and
Tiebreakers

Your choice between these two
options could have a significant
effect on which observations are

passed along / dropped when
using NODUP and NODUPKEY.

Use of this keyword
overrides the system

option SORTEQUALS /
SORTNOEQUALS.

What if I have two or more observations with
the same values for their sort variables?

EQUALS and NOEQUALS

EQUALS is usually the preferred alternative.
(which is probably why it is the default!)

NOEQUALS will save processing time and CPU.

Looking Beneath the Surface of Sorting 70

Selective Record Retention and
Tiebreakers

Your choice between these two
options could have a significant
effect on which observations are

passed along / dropped when
using NODUP and NODUPKEY.

Use of this keyword
overrides the system

option SORTEQUALS /
SORTNOEQUALS.

Another alternative:

Randomization!

Add a random variable to

your dataset, and make it

the most granular variable

of your sort sequence!

Sorting is expensive.

(Well, relatively so.)

Think about why you want to sort,
and if there are any alternatives.

(And then, are those alternatives
BETTER alternatives for you?)

71

Alternatives to Sorting

Looking Beneath the Surface of Sorting

BY vs. CLASS

MERGE vs. JOIN

Indexes & Hashing

72

Alternatives to Sorting

Looking Beneath the Surface of Sorting

Indexing and Hashing do not really
fall into the topic of sorting.

At least not until you expand the
topic to start thinking about just
WHY you want to perform a sort

in the first place!

73

Alternatives to Sorting
Indexes &
Hashing

Looking Beneath the Surface of Sorting

Indexing and Hashing do not really
fall into the topic of sorting.

If you want to be able to reference
your data in a particular order, or
you want to merge two datasets

together, or … perhaps you don’t
need to sort after all!

74

Alternatives to Sorting
Indexes &
Hashing

Looking Beneath the Surface of Sorting

Indexing and Hashing do not really
fall into the topic of sorting.

I refer you to one of the many fine
papers presented over the years to

gain more information on these
topics.

75

Alternatives to Sorting
Indexes &
Hashing

Looking Beneath the Surface of Sorting

Due to time constraints, we will not
be talking about System Options

related to sorting (other than what
has already been mentioned).

Please refer to the manual –
ESPECIALLY the SAS Companion
for the Operating System of your

choice!

76

System Options

Looking Beneath the Surface of Sorting

We talked about a lot of
aspects of sorted data.

(Probably not all of them, but
enough for one session.)

(Probably more than you thought
there were, too!)

77

Conclusion

Looking Beneath the Surface of Sorting

If you only take one thing
out of this session …

Read the manual.

Then, RE-READ the manual on occasion;
don’t just assume you know it!

(a) You might have forgotten something.

(b) They might have added something in the current
release – or the one before that!

78

Conclusion

Looking Beneath the Surface of Sorting

For further information …

The author can be reached at :

KuligowskiConference@gmail.com

79

Conclusion

Looking Beneath the Surface of Sorting

SAS

is a registered trade-

 mark or trademark of SAS

 Institute, Inc. in the USA and

 other countries. (R) indicates

 USA registration.

My
law yer

80

Conclusion

Looking Beneath the Surface of Sorting

