
Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 1

Copyright © 2006 & 2007, Prowerk Consulting Ltd. and Stratia Consulting Inc. All rights reserved.

Demystifying the SAS® Macro Facility
– by Example

Harry Droogendyk
Stratia Consulting

Marje Fecht
Prowerk Consulting

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 2

Introduction
The SAS macro facility enables you to apply a wealth

of useful, uncomplicated, real-world solutions to
enhance your coding pleasure, reduce coding effort,
and minimize error.

Hopefully, this presentation will remove some of the
mystery of macros and provide you with tips and
tricks you can take away and implement
immediately.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 3

Introduction
This presentation focuses on using the macro facility to

• reduce code repetition

• increase control over program execution

• minimize manual intervention

• create modular code.

Until you understand the “inner workings” of the macro
facility, it can be mysterious. We’ll share some
common Gotchas to help you avoid programming
and macro traps.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 4

GOTCHA - #1
Tedious Repetition and Maintenance

Changes required each month for new datasets:

title "Sales 200511";
proc print data=sales_200511 noobs; run;

title "Sales 200512";
proc print data=sales_200512 noobs; run;

title "Sales 200601";
proc print data=sales_200601 noobs; run;

title "Sales 200602";
proc print data=sales_200602 noobs; run;

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 5

GOTCHA - #2 – What is wrong with IF?
data gotcha;
set DailyTxns;
if txnSize > 50000 then do;
%let alert = NOTE: BIG Transactions;

end;
run;
proc means data=gotcha mean min max;

var TxnSize;
title "Average Txns &alert";

run;
Average Txns NOTE: BIG Transactions

Mean Minimum Maximum

23941.62 20000.00 49685.48

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 6

Macro Variables – What IS the timing?!

Compiler Word Scanner

Symbol Table

Macro Processor

data gotcha;

set DailyTxns;

if txnSize>50000 then do;

%let alert = NOTE: BIG Transactions;
end;

run;
proc means data=gotcha mean min max;
var TxnSize;
title "Average Txns &alert";

run;

Execution Stack
data gotcha;

set DailyTxns;

if txnSize>50000 then do;

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 2

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 7

Macro Variables – What IS the timing?!

Compiler Word Scanner

Macro Processor

data gotcha;

set DailyTxns;

if txnSize>50000 then do;

%let alert = NOTE: BIG Transactions;
end;

run;
proc means data=gotcha mean min max;
var TxnSize;
title "Average Txns &alert";

run;

Execution Stack
data gotcha;

set DailyTxns;

if txnSize>50000 then do;

Symbol Table

alert
NOTE: BIG
Transactions

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 8

Macro Variables – What IS the timing?!

Compiler Word Scanner

Macro Processor

data gotcha;

set DailyTxns;

if txnSize>50000 then do;

%let alert = NOTE: BIG Transactions;
end;

run;
proc means data=gotcha mean min max;
var TxnSize;
title "Average Txns &alert";

run;

Execution Stack
data gotcha;

set DailyTxns;

if txnSize>50000 then do;

end;

run;

Symbol Table

alert
NOTE: BIG
Transactions

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 9

Macro Variables – What IS the timing?!

Compiler Word Scanner

Macro Processor

data gotcha;

set DailyTxns;

if txnSize>50000 then do;

%let alert = NOTE: BIG Transactions;
end;

run;
proc means data=gotcha mean min max;
var TxnSize;
title "Average Txns &alert";

run;

Execution Stack

proc means data=gotcha
mean min max;
var TxnSize;
title "Average Txns

Symbol Table

alert
NOTE: BIG
Transactions

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 10

Macro Variables – What IS the timing?!

� When macro code is encountered by the data
step compiler it is processed immediately
• i.e. macro code runs before the data step code.

� Mixing macro and data step code can generate
unexpected results!

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 11

Decisions – Creating Macro Variables
� Who processes the %let ?

� When is the %let processed ?

� Macro processor deals with %let
• doesn’t recognize as related to the data step
• the %let never makes it to the data step compiler

� Timing demands a different approach such as a
SYMPUT to create the macro variable

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 12

SAS Macro Facility

The SAS Macro facility includes:

� Macro variables
• Automatic (system defined)
• User defined

� Macro functions

� Macro definition / creation

� Macro programming statements
• conditional, iterative processing
• environment control.

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 3

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 13

Macro Variables
� Macro variables

• contain text
• are typically used for text substitution.

� Automatic (system-defined) macro variables:
• &sysdate and &sysdate9
• &sysjobid
• &syserr

� User-defined macro variables:
• %let mode = PROD;
• DATA step: call symputx(‘nobs' , N);
• PROC SQL: select into :mvar …

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 14

Macro Variables – Resolving / Viewing

� To view the contents of Macro variables
• %put Mode is &mode;
• %put _user_;
• %put _automatic_;

� Macro variables are “typically” resolved prior to
SAS code compilation.
• Title "Report run on &RunDate";
• %let type = temp;
• SET lib.mydata &type.data;

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 15

Macro Variables – Not just a “word”

%let code = %str(data a; i = 7; run;);

options symbolgen;

&code;

====== LOG ========

SYMBOLGEN: Macro variable CODE resolves to

data a; i = 7; run;

NOTE: The data set WORK.A has 1 observations and 1
variables.

Macro variables contain text - any text

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 16

Removing the “meaning” of text

Why was %str() used?

%let code = %str(data a;i = 7;run;);

What is the value of &code below?

%let code = data a;i = 7;run;;

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 17

Why use Macro Variables

� Easily Maintained Code
• Change the value of a macro variable once and the new

value substitutes wherever &mode appears
−don’t care where those values are in program

� “Table-Driven” Code
• monthly proc prints from Gotcha # 1
• use data to dynamically define macro variables
• macro variables act as parameters to program
• program adapts / reacts to the data

� Controlling Program Execution
• should this line of code / step execute ?

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 18

Macro Variables – Custom Date Values

Custom date values are useful for:
• Report titles Reporting as of March 27, 2006
• “Versioned” file names

− SAS log CpmgnA_20060327_1329.log
− Reports CmpgnA_20060327.xls

• Subset criteria – especially with SQL pass-thru

In the “old days”, assigning custom date values to macro
variables was ONLY accomplished via a data step.
Now there are more elegant solutions.

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 4

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 19

Macro Variables – Custom Date Values
Classic Approach

data _null_;
call symput('d',put(today(),yymmddN8.));

run;

title "Report as of &d";

Report as of 20060327

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 20

Macro Variables – Custom Date Values
Streamlined Approach

In one line, using %sysfunc!
%let Date = %sysfunc(today(),yymmddN8.);
title "Report As of &Date";
%let log = CpmgnA_&Date..log;

Or, without creating an intermediate variable:
title "As of %sysfunc(today(),yymmddN8.)";
Watch spaces!
%let num = %sysfunc(today(),8.);
%put **&num**; ** 16887**

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 21

Macro Variables – Controlling Execution
Consider using macro variables to control

• storage locations for logs, data, and output
• sampling during testing
• effectively halting program (or single step) execution when

errors detected.

%let run = run;

.. step ..

%if &syserr %then %let run = %str(run cancel);

data _null_;

etc…

&run;

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 22

Switching between TEST and PROD

%let mode = PROD;

%let sample = *; /*specify an * to avoid sampling*/

%let yyyymm = 200510;

libname cc "H:\sugi31\&mode\&yyyymm\Cmpgn";
data cc;

set cc.campaigns;

&sample if ranuni(1) * 10 > 9.9;

where LOB = '610';
run;

To enable sampling in TEST, set sample to null or %str();

To avoid sampling in PROD, set sample to an asterisk

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 23

Macro Variables – Recap

� Macro variables contain text

� Macro variables are useful for substituting values into
SAS code

� Use of macro variables enables efficiency
• macro variable date stamp creates unique names
• dynamic titles
• promoting from TEST to PROD is a snap!

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 24

Macro Variables – creating an “IN” list

Dynamic “in” lists help make low-maintenance programs.
•where dept in (&DeptList);

•where me_dt in (&MonthList);

The data step can create the list, but SQL takes less
“thinking”.

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 5

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 25

Macro Variables – creating an “IN” list

proc sql noprint;
select distinct quote(trim(region))

into :reglist separated by ","
from sashelp.shoes

where returns > 10000;
quit;
%put ®list;

====== Partial Log ========

"Africa","Canada","Central
America/Caribbean","Middle East","Pacific","United
States","Western Europe"

SQL Solution:

Tip: Use translate() to change double quotes to single
Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 26

Macro Variables – using an “IN” list

proc sql;
select region

, sum(returns) as tot_returns
from sashelp.shoes

where region in (®list)
group by region;

quit;
====== Partial Output ========
Region tot_returns

Africa 74087
Canada 129394

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 27

Macro Variables – creating an “IN” list

The code works to produce the IN list needed for
this application, but . . .
what if you want to re-use the code for

• other variables and different data sources ?
• both numeric and character values ?

A macro provides flexibility to:
• specify input parameters
− specify data set and variable names

• allow decision making
• create reusable code.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 28

Creating a macro

%macro sug_macro;

%put SAS rocks !!;

%mend sug_macro;

%sug_macro;

====== LOG =======

SAS rocks !!

� Starts with %macro macro_name;

� Ends with %mend macro_name;

� Virtually anything you want inside!

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 29

Why create a macro?
� Macro expressions for looping and decisioning

can only take place inside a macro
• loops %do / %end
• decisioning %if / %then / %else

� Modular code
• macro “functions”

� Parameter-driven code

� Job security ;-)

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 30

Creating an “IN” list – Macro-ized

%macro inlist;

%global reglist;

proc sql noprint;

select distinct quote(trim(region))

into :reglist separated by ','
from sashelp.shoes;

quit;

%mend inlist;

%inlist;

Change previous example into a macro

Is this better? No, but NOW let’s add some value!

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 6

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 31

Creating an “IN” list – Macro Parameters

%macro inlist(ds=,fld=,mvar=inlist);

%global &mvar; *make var available outside macro;

proc sql noprint;

select distinct quote(trim(&fld))

into :&mvar separated by ','
from &ds;

quit;

%mend inlist;

%inlist(ds=sashelp.shoes,mvar=reglist,fld=region);

Parameters add flexibility - more useful for more applications.

Specification of parameters allows for “dynamic” code.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 32

Creating an “IN” list – Macro Parameters
While we’ve added the ability to specify

parameters to “drive” the code, we’re still
somewhat limited.
• What if we want a list of numeric values? Should they

be quoted?
• How can the macro “decide” if quotes are required?
• We’re going to add another macro parameter… but

we’re not always going to use it. More mystery. ☺

Let’s look at macro “decisioning” which will help us
deal with numeric vs. character values.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 33

Creating an “IN” list – Decisioning
%macro inlist(ds=,fld=,type=C,mvar=inlist);

%global &mvar;
proc sql noprint;

%if &type = C %then %do;
select distinct quote(trim(&fld))

%end; %else %do;
select distinct &fld

%end;
into :&mvar separated by ',' from &ds;

quit;
%mend inlist;
%inlist(ds=sashelp.shoes,mvar=reglist,fld=region);

Where’s type= ? It defaults to value in macro definition !
Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 34

Creating a SEQUENCE (“array”)
of Macro Variables

In the previous example, all values were stored in a
single macro variable. However, a sequence of macro
variables can be handy for iterative processing.

For example, you may need to produce monthly data
for a “dynamically determined” number of months.
•%let Month1 = 198001;

•%let Month2 = 198002;

Think of “Gotcha1”, PROC PRINTS of multiple
“month” datasets

Creating a sequence (“array”) of macro variables is
easy!

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 35

Creating a SEQUENCE / “array” of Macro
Variables

proc sql noprint;
select distinct put(mdy(month,day,year), yymmN6.)

into :Mth1 - :Mth999
from sashelp.retail;

%let NumMths = &sqlobs;
quit;
%put &numMths Months of Dates;
%put Mth 1: &Mth1, Mth &NumMths: &&Mth&NumMths;

====== Partial Log ========
%put &numMths Months of Dates;
58 Months of Dates
%put Mth 1: &Mth1, Mth &NumMths: &&Mth&NumMths;
Mth 1: 198001, Mth 58: 199404

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 36

Macro variable r-r-resolution

� Discussed word scanner and macro processor earlier
• as macro triggers are encountered, macro processor kicks in
• finds an ampersand, searches the symbol table for variable
• substitutes value.

%put &&Mth&NumMths;

� Multiple passes to resolve multiple ampersands
• &&Mth&NumMths

− &&Mth resolves to &Mth
− &NumMths resolves to 58

– result is &Mth58
• &Mth58 resolves to 199404

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 7

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 37

Using a SEQUENCE / “array” of Macro
Variables

%macro print(lmt);
%do i = 1 %to &lmt;

title "Sales &&Mth&i";
proc print data=sales_&&Mth&i noobs;
run;

%end;
%mend print;

%print(&NumMths)

Remember “Gotcha 1” ?

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 38

Using a SEQUENCE / “array” of Macro
Variables

====== Partial Log ========
MLOGIC(PRINT): Beginning execution.
MLOGIC(PRINT): Parameter LMT has value 3
MLOGIC(PRINT): %DO loop beginning; index

variable I; start value is 1; stop value is 3;
by value is 1.

MPRINT(PRINT): title "Sales 198001";
MPRINT(PRINT): proc print data=sales_198001

noobs;
MPRINT(PRINT): run;

<snip>
MLOGIC(PRINT): %DO loop index variable I is now

4; loop will not iterate again.
MLOGIC(PRINT): Ending execution.

options mprint; reveals the code generated

Î

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 39

Real-World Application of Macro “functions”
� Daily process to merge Master dataset with

daily Transaction dataset
• macro %do_merge performs merge.

� When Transaction dataset doesn’t exist or is
empty we want to skip the merge
• exist() function
• number of obs is available
−nobs= on SET statement
− sashelp.vtable nobs value
−attrn() function.

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 40

Olde Methodology

data _null_;
call symput('exist',exist('transaction'));

run;

data _null_;
if 0 then set transaction nobs=nobs;
call symput('nobs',nobs);
stop;

run;

Could use a data step to define macro variables:

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 41

More Recent Methodology

%let nobs = 0; ** Need to predefine NOBS in

case transaction DS does not exist ;

proc sql;
select nobs into :nobs

from sashelp.vtable
where libname = 'YOURLIB'

and memname = 'TRANSACTION';
%let exist = &sqlobs;

quit;

%put EXIST=&exist NOBS=&nobs;

Or use SQL and SAS metadata:

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 42

Magnificent Macro Methodology

***** utility macro to provide ds attributes;
%macro attrn(ds,attrib);

%let dsid = %sysfunc(open(&ds,is));
%sysfunc(attrn(&dsid,&attrib))
%let rc = %sysfunc(close(&dsid));

%mend attrn;

%macro check_transaction;
%if %sysfunc(exist(transaction)) %then %do;

%if %attrn(transaction,nobs)> 0 %then %do;
%do_merge

%end; %else %put No obs in TRANSACTION;
%end; %else %put TRANSACTION does NOT exist;

%mend check_transaction;
%check_transaction;

Demystifying Macro - Fecht / Droogendyk

Copyright © 2006, 2007, 2008 Prowerk Consulting Ltd and Stratia Consulting Inc. All rights reserved. 8

Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 43

Macro Miscellanies

� SAS/Connect
• %sysrput – copy remote macro variables to local
• %syslput – copy local macro variables to remote

� “cleaning up” macro variables
• v8 – set value to nothing
%let mvar = ;

• v9 – actually delete macro variable
%symdel mvar;

� determining macro variable existence
• v9 - %symexist, %symglobl

� SASAUTOs
Copyright © 2006, Prowerk Consulting LTD and Stratia Consulting Inc. All rights reserved. 44

Conclusion

� SAS macro facility
• made up of macro variables, macro definitions, macro

“functions”

� Reduces code repetition

� Minimizes program maintenance

� Increases control over program execution

� Creates modular, reusable code

Copyright © 2006 & 2007, Prowerk Consulting Ltd. and Stratia Consulting Inc. All rights reserved.

Marje Fecht
Prowerk Consulting
marje.fecht@prowerk.com

