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ABSTRACT  
The SAS macro facility enables you to apply a wealth of useful, uncomplicated, real-world solutions to enhance 
your coding pleasure, reduce coding effort, and minimize error. As your business applications inevitably become 
more complex, the SAS macro facility is indispensable to: 

• reduce code repetition 
• increase control over program execution 
• minimize manual intervention 
• create modular code. 

 
Unfortunately, the SAS macro facility is often perceived as confusing, difficult to use, and only really 
comprehensible by a few long-time macro masochists. This presentation removes the mystery of macros and 
provides coding tips, macro solutions, and methodologies you can take away and implement immediately. 
 

INTRODUCTION 
Since the SAS Macro facility can be perceived as mysterious until you understand the inner workings, we will begin 
by exploring “common gotchas” to help you avoid some traps.   Then, we will develop macro coding examples to 
explore 

• macro variables 
• macro functions 
• macro definition 
• macro programming statements. 

 
The majority of this paper is equally applicable to both SAS 8 and SAS 9.  If something is only available in SAS 9, it 
is noted. 

COMMON GOTCHAS 
GOTCHA # 1 
Do you repeatedly copy and paste steps that are quite repetitious?   Consider this program: 
 

title "Sales 200511"; 
proc print data = sales_200511 noobs; 
run; 
title "Sales 200512"; 
proc print data = sales_200512 noobs; 
run; 
title "Sales 200601"; 
proc print data = sales_200601 noobs; 
run; 
title "Sales 200602"; 
proc print data = sales_200602 noobs; 
run; 

 
While this example may not seem dreadfully repetitious or high-maintenance, it could become tedious to work with 
as it “grows”.   Later examples in this paper will demonstrate easy and effective ways to generate this code with 
macro. 

 



2 

GOTCHA # 2 
Timing is the key to using macro functionality.   If you misunderstand the timing, you will get unexpected results! 
In addition to the timing issues, another typical macro processing misunderstanding revolves around “Who does 
what?”   
 
When you submit the following program, why isn’t the title reflective of the TxnSize values in the output data set?  
 

data gotcha;  
 set DailyTxns; 
    if txnSize>50000 then do;  
    %let alert = NOTE: BIG Transactions; 
  end;  
run;  
proc means data=gotcha mean min max; 
  var TxnSize; 
  title "Average Txns  &alert"; 
run; 

 
Since this program ran without error, but the results were not as we expected, there’s obviously a problem, and the 
problem is both TIMING and “Who Does What?”!  
 
When you first began to use SAS, you likely learned that steps are compiled, prior to executing.  For the DATA step 
in this example, the SAS word scanner works through the entire DATA step (up to and including the run;) prior to 
executing the DATA step.   When macro triggers are encountered, such as % and & followed immediately by a 
“word”, the macro processor looks at the token and the adjoining “word”, to resolve or carry out the specified 
instruction.   
 
Consider the processing of the example above.  When the DATA step compilation begins, the first three statements 
are scanned and placed in the execution stack, awaiting the end of the step.  Next, the word scanner encounters  
      %let alert = NOTE: BIG Transactions; 
When the word scanner passes the tokens % followed by the adjoining word let to the macro processor, the macro 
processor requests all text through to the semicolon.  The macro processor evaluates the %let statement, creates a 
macro variable named alert, and stores NOTE: BIG Transactions as its value in the macro symbol table.   
NOTE that the %let statement is NOT placed back in the execution stack.  Instead, the macro facility carried out 
this instruction prior to the end of DATA step compilation. 
 
Continuing, the word scanner passes the next two statements to the execution stack.  At the completion of DATA 
step compilation, the execution stack contains: 
 

data gotcha;  
  set DailyTxns; 
  if txnSize>50000 then do;  
  end;  
run;  

 
The data values have NO IMPACT on the value of the macro variable ALERT.  Now we know why the title is wrong! 
 
Following the execution of the DATA step, the word scanner continues parsing the PROC MEANS step.  When the 
word scanner encounters the next macro trigger in the TITLE statement, it passes &alert to the macro processor.   
An ampersand followed by a name is a request for a macro variable resolution, so the macro processor grabs the 
current value of the macro variable in the symbol table, and passes it back to the word scanner.  This value is now 
placed in the execution stack followed by the remainder of the PROC MEANS step. 
 
How should we have solved this problem?   The SYMPUT routine is useful to create macro variables when the 
values are data dependent. 

 
Average Txns  NOTE: BIG Transactions                                                        
Mean         Minimum         Maximum 
-------------------------------------- 
23941.62     20000.00        49685.48 
-------------------------------------- 
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MACRO VARIABLES 
As demonstrated in our first two Gotchas, macro variables provide a way to substitute text into a SAS program at 
compile time.  That text can encompass anything from a single character to an entire program.     Macro variables 
enable you to easily maintain your production programs since you can change a value once where it is assigned 
and profit from substitution throughout your program, wherever a macro variable reference appears.   Often, you 
will populate macro variables from data values, which lets you create table driven programs that adapt or react to 
your data. 
 
There are two types of macro variables. 
• Automatic Macro Variables are created by SAS and typically exist for the duration of your session (job).   

o Sysdate9 contains the date that your SAS session (program) began.   Ex: 27Mar2006  
o SYSSCP identifies the Processor (operating system).  Eg: WIN 
o For a complete list of automatic macro variables, see SAS Online Documentation. 

• User defined macro variables are created within your program. 
o %let mode = PROD; 
o Call symputx('Nobs' , N);   ** SYMPUTX is a SAS 9 function; 

To view the contents of a macro variable, you can use a %put statement: 
%put Mode is &mode; 
 
%put _user_;       ** to view the contents of all user defined macro variables; 
 
%put _automatic_;  ** to view the contents of all automatic macro variables; 
 

NOT JUST A “WORD” 
Macro variables can contain any text.  The maximum length of a macro variable is SAS version dependent. 
 

%let code = %str(data a; i = 7; run;); 
options symbolgen; 
&code; 

 
What would the value of the macro variable CODE be if we excluded the quoting function, %str, and used the 
following? 
 
 %let code = data a; i = 7; run; 
 
&Code would result in the value  

     data a 
 
Since a semicolon is used to end a %let statement, a %str function is used to hide the literal meaning of special 
characters such as the semicolon. 
 

USING MACRO VARIABLES 
CUSTOM DATE VALUES 
Typically, the first real use of macro variables for most people revolves around date values.  Most programs require 
subsetting or custom text that is date dependent.   Macro variables are extremely useful for including date values in 
file names, titles, footnotes, and subset criteria.   
 
The DATA step with the symput routine is the classic approach (prior to SAS 6.12)  to create and store custom date 
values in a macro variable.  The following step creates a macro variable named date containing today’s date. 
 

data _null_; 
 call symput('date',put(today(),yymmddN8.)); 
run; 
title "Report As of &date"; 
 

SYMBOLGEN:  Macro variable CODE resolves to 
 data a; i = 7; run; 
NOTE: The data set WORK.A has 1 observations and 1 variables. 
 

====== title ========  
Report As of 20060327 
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You can avoid the unnecessary DATA step by using the macro function %sysfunc. 
 

%let date = %sysfunc(today(),yymmddN8.); 
title "Report As of &date"; 
 
%let log = CpmgnA_&date..log; 
 

If you do not need an intermediate macro variable, use %sysfunc directly in your code. 
 
title "As of %sysfunc(today(),yymmddN8.)"; 
%let num = %sysfunc(today(),8.);    ** Beware of spaces ! **; 
%put **&num**; **   16887**   

 
Each of the examples above shows the macro variable reference within a double-quoted string.  That’s very 
important!!  If the macro variable (or %sysfunc function) were enclosed in single-quotes it would be hidden from the 
macro processor and it would not resolve.  title 'Report As of &Date'; would display the contents of the 
single quotes,  Report As of &Date, rather than substituting the macro variable value. 
 
The setting of &log brings up an important point.  As we’ve already discovered, the macro processor is invoked 
when a macro trigger immediately followed by a “word” is encountered.  Where there is any ambiguity as to where 
the end of the “word” lies, the macro variable reference must be followed by a period to end the “word”.   If the 
macro variable &date was being used to define a report name, a specification of &date_report.xls wouldn’t achieve 
the desired result.  The macro processor would search the symbol table for a macro variable named date_report 
rather than date.  To force the end of the word, a period must be specified:  &date._report.xls.    
 
That’s helpful, but isn’t this still a different situation than the &log example above?  Why were two periods specified 
after &date?  The first period ends the &date variable, the second is the period within the filename, separating the 
name from the log file type suffix. 
 

CONTROLLING EXECUTION 
Macro variables are useful for simple execution control within your program.  For example, suppose that when you 
are in development mode, you only use a 1% sample of your data and you read / write to a development location.  
When you move to production, you read all of the data and you work with production locations. 

 
** To enable sampling in TEST, set sample to null or %str(); 
** To avoid  sampling in PROD, set sample to an asterisk to comment out line; 
 
%let mode   = PROD;  
%let sample = *;  
%let yyyymm = 200510; 
 
libname cc "H:\sugi31\&mode\&yyyymm\Cmpgn";  
 
data cc;  
  set cc.campaigns; 
  &sample if ranuni(1) > .99; 
  where LOB =  '610'; 
run; 
  

CREATING AN “IN” LIST USING MACRO VARIABLES 
Dynamic data-driven IN lists result in less program maintenance, since the program will easily adapt to new 
information.  The DATA step can be used to construct the list, and store it in a macro variable, but utilizing SQL 
requires less effort.  The SQL INTO: stores values into a macro variable, with separators as specified.  In this 
example, the values will be quoted, separated by commas and stored in reglist. 
 

proc sql noprint; 
select distinct quote(trim(region)) into: reglist separated by "," 
  from sashelp.shoes 



5 

 where returns > 10000; 
quit; 
%put &reglist; 
 

====== LOG ======== 
"Africa","Canada","Central America/Caribbean","Middle East","Pacific","United States","Western Europe" 
 
To use the list, specify 

where region in ( &reglist ) 
 
 
If you work with a database system that requires an IN list with single quotes instead of double quotes, you can use 
a translate function outside of the quote function to make the change. 
 
Notice in this example we assumed that the variable feeding the IN list is character.  Wouldn’t it be nice to setup the 
SQL to adapt to the data type?  And, wouldn’t it really be nice if you could just call up this code segment whenever 
you need an IN list, without having to copy it to all of your programs?   
 
The next section will demonstrate that this example lends itself nicely to a generalized solution that enables you to 
supply the table name, column name, data type, and macro variable name as part of a macro invocation. 

MACRO LANGUAGE 
We’ve already discovered that SAS macro variables are really not that mysterious.  They simply provide a means of 
substituting text into our SAS program during compilation.  In fact, SAS macro variables can contain entire SAS 
statements or even an entire program.  
 
The function of the SAS macro language isn’t that much different than SAS macro variables - SAS macros simply 
generate text.  In addition to allowing simple text substitution, SAS macros provide looping and decisioning 
functionality to control text generation.   Before generalizing the IN list example using macros, let’s try a few simple 
macro examples to make this clearer. 

DEFINITION OF A MACRO 
Each macro must begin with a %macro macro_name; statement and end with a %mend; statement.  Virtually 
anything else may be coded between the two statements.  The macro is invoked by specifying the macro name 
prefaced with a percent sign. 
 

%macro sug_macro; 
  %put SAS rocks!!!; 
%mend sug_macro; 
 
%sug_macro; 
 

This macro is very simple.  The %put statement results in the text following the %put to be written to the log: 
 

SAS rocks!!! 
 

WHY USE A MACRO? 
Macros are most often used to generate SAS code ( which is really just text ).  In real world situations which call for 
a macro solution, the generation of the SAS code may demand conditional processing or loops to generate the 
required code.  While macro variables may be used anywhere, %if /%then/%else and %do macro statements 
may only be invoked within a macro.  Other macro statements such as %global, %let, %put,  etc.. may be 
specified in open code.  ( Note that not all commands beginning with a percent sign are macro statements, eg. 
%include ).   
 
In addition, macros allow for the writing of modular code that can be used like functions.  Sections of utility code, 
even short snippets, may be written in macro form and made available in a common environment and invoked in 
multiple programs by different users.  Utility code of this nature is most useful when the macro is invoked with 
parameters to define/customize the macro results, eg. specification of an input data set.   
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MACRO EXAMPLES 
The “IN list” example we’ve been considering could be “macroized” and made available to the entire user 
community.  That way everyone could benefit from this bit of utility code without needing to write it from scratch 
each time it is required.   
 

%macro shoes_inlist; 
%global reglist; 

 proc sql noprint; 
  select distinct quote(trim(region))  
    into :reglist separated by ',' 
    from sashelp.shoes 
 quit; 
%mend shoes_inlist; 
 
%shoes_inlist; 
 

While some benefit may be realized by including this piece of code in a macro, it’s really only useful when a user 
requires a list of regions from the sashelp.shoes dataset.  Rather than writing a macro specific to one variable 
within a specific dataset, a really useful macro solution would allow the specification of parameters to produce a 
“customized” IN list. 
 

%macro inlist(ds,fld,mvar); 
%global &mvar; 

 proc sql noprint; 
  select distinct quote(trim(&fld))  
    into :&mvar separated by ', ' 
    from &ds; 
 quit; 
%mend inlist; 
 
%inlist(sashelp.shoes,region,reglist); 

 
The macro has been renamed to inlist and three positional parameters have been defined to allow the 
specification of the input dataset, the field within the input dataset and the name of the macro variable to be 
created.  Each macro parameter value is available to the macro as a macro variable.   
 
We now have a useful macro!  We can build and store an IN list into any macro variable for any character field in 
any dataset accessible to us.   
 
For a couple of reasons, positional parameters should not be used where more than one macro parameter may be 
specified.  Positional parameters must be defined in the correct order when the macro is invoked or strange results 
will occur.  In addition, the specification of positional parameters does not afford any “self-documentation” in the 
invoking program.  When writing macros, get into the habit of using keyword parameters as demonstrated in the 
following example: 

 
%macro inlist(ds = ,fld = ,mvar = inlist); 

%global &mvar; 
 proc sql noprint; 
  select distinct quote(trim(&fld))  
    into :&mvar separated by ', ' 
    from &ds; 
 quit; 
%mend inlist; 
 
%inlist(ds = sashelp.shoes, mvar = reglist, fld = region); 
%put &reglist; 
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In this version of the inlist, three keyword parameters have been defined to allow the specification of the input 
dataset, the field within that dataset and the name of the macro variable to be created.  Upon careful comparison of 
the macro definition and invocation, it’s apparent that the keyword parameters have been specified in a different 
order in each.  Since keywords have been used, the order is not important and the SAS macro processor will assign 
parameter values correctly to each keyword parameter.   The SYMBOLGEN lines in the log show the resolution of 
macro variables, the MPRINT lines show the SAS code generated by the macro.  
 

options mprint symbolgen; 
%macro inlist(ds = , fld = , mvar = inlist); 

%global &mvar; 
    proc sql noprint; 
        select distinct quote(trim(&fld)) 
          into :&mvar separated by ',' 
          from &ds; 
    quit; 
%mend inlist; 
%inlist(ds = sashelp.shoes, mvar = reglist, fld = region); 
 
LOG: 
SYMBOLGEN:  Macro variable MVAR resolves to reglist 
MPRINT(INLIST):   proc sql noprint; 
SYMBOLGEN:  Macro variable FLD resolves to region 
SYMBOLGEN:  Macro variable MVAR resolves to reglist 
SYMBOLGEN:  Macro variable DS resolves to sashelp.shoes 
MPRINT(INLIST):   select distinct quote(trim(region)) into :reglist separated by 
',' from sashelp.shoes; 
MPRINT(INLIST):   quit; 
NOTE: PROCEDURE SQL used: 
      real time           0.01 seconds 
      cpu time            0.01 seconds 
 
 
SYMBOLGEN:  Macro variable REGLIST resolves to "Africa","Asia","Canada","Central 

America/Caribbean","Eastern Europe","Middle East","Pacific","South 
America","United States","Western Europe" 

1310  %put &reglist; 
"Africa","Asia","Canada","Central America/Caribbean","Eastern Europe","Middle 
East","Pacific","South America","United States","Western Europe" 

 
While the inlist macro has been improved, it is still limited since the IN list will always create a quoted list of 
values.   How can the macro be modified to deal with numeric data as well?  If we add another parameter to inform 
the macro that the data set variable is character or numeric, the value quoting can be conditioned using the macro 
%if statement. 
 

%macro inlist(ds = , fld = , type = C, mvar = inlist); 
%global &mvar; 

 proc sql noprint; 
  %if &type = C %then %do; 
   select distinct quote(trim(&fld))  
  %end; %else %do; 
   select distinct &fld 
  %end; 
  into :&mvar separated by ',' from &ds; 
 quit; 
%mend inlist; 
 
%inlist(ds = sashelp.shoes, mvar = reglist, fld = region); 

 
This example highlights another advantage of keyword parameters.  The type parameter is defined in the macro 
definition with a default value of C.  If type = is omitted from the macro invocation, the default value will be used. 
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Notice the absence of quotes in the %if statement.  Since the macro facility is really just a text processor, 
everything it finds without a percent sign or ampersand ( %, & macro triggers ) is treated as text.  When the &type 
symbol is encountered in the %if statement, the macro processor will retrieve the value of &type from the symbol 
table.  The retrieved value, C, will be compared to whatever is found on the other side of the equal sign.  If the two 
are equal, the text between the %then %do and the %end will be processed.   

 
In this case, because the type parameter wasn’t specified in the macro invocation, the default value of C coded in 
the macro definition will prevail and the distinct values returned by the query will be quoted. 
 

CREATING A SEQUENCE OR “ARRAY” OF MACRO VARIABLES 
In the examples we’ve seen thus far, the values retrieved / created have been stored in a single macro variable.  
Sometimes, it’s very helpful to create a sequence or “array” of macro variables to process iteratively.  For example, 
a monthly process may need to run for a dynamically determined number of months ( see the 1st “gotcha” at the 
beginning of this paper ).   
 
The months could be assigned manually via a series of %let statements. 

%let mth1  = 198001; 
%let mth2  = 198002; 
%let mth3  = 198003; 
%let Mths = 3; 
 

However, if the data is available in a dataset, multiple macro variables can be created in one fell swoop using SQL 
into: 
 

proc sql noprint; 
select distinct put(mdy(month,day,year), yymmN6.)  
  into :Mth1 - :Mth999 
  from sashelp.retail; 
   
  %let NumMths = &sqlobs; 
   
quit; 
 
%put &numMths Months of Dates; 
%put Mth 1: &Mth1, Mth &NumMths: &&Mth&NumMths; 
 

The query is extracting distinct year/month values and creating a series of Mthnnn macro variables.  The 999 
specified in the upper range of the into specification is entirely arbitrary, but it must be a number high enough to 
contain all of the possible year/month values.  If the range specified had been into :Mth1 - :Mth3, the query would 
only return three values.  As it is, the number of macro variables created is available from the automatic macro 
variable &sqlobs and saved in the NumMths macro variable.  After executing the %put statements following the 
SQL statement, the log displays: 
 

SYMBOLGEN:  Macro variable NUMMTHS resolves to 58 
 
1320  %put &numMths Months of Dates; 
58 Months of Dates 
1321  %put Mth 1: &Mth1, Mth &NumMths: &&Mth&NumMths; 
 
SYMBOLGEN:  Macro variable MTH1 resolves to 198001 
SYMBOLGEN:  Macro variable NUMMTHS resolves to 58 
SYMBOLGEN:  && resolves to &. 
SYMBOLGEN:  Macro variable NUMMTHS resolves to 58 
SYMBOLGEN:  Macro variable MTH58 resolves to 199404 
Mth 1: 198001, Mth 58: 199404 

 
This of course begs a question - what in the world does &&Mth&NumMths do?!?  Earlier in the word scanner / 
macro processor discussion we discovered that as macro triggers are encountered, the macro processor kicks in 
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and deals with macro tokens.   When macro variables are specified, the macro processor will determine their value 
by looking them up in the symbol table.  In the case outlined above, the macro processor will actually pass through 
the resolution phase several times. 
 
 Consider &&Mth&NumMths 

The word scanner hands the macro processor the first 2 tokens - && 
&&          resolves to &   which is placed back in the input stack 
The word scanner hands the macro processor the next token - Mth 

               Mth  resolves to Mth    which is placed back in the input stack 
The word scanner hands the macro processor the next 2 tokens – &NumMths 

  &NumMths resolves to 58      which is placed back in the input stack 
 

Now the input stack has  &Mth58 
The word scanner hands the macro processor these 2 tokens which resolve to 199404. 
 
Easy?!?  Tokenization is actually quite predictable once you get the hang of it.  

 

USING A SEQUENCE OR “ARRAY” OF MACRO VARIABLES 
Recall the original sequence of macro variables. 
 

%let mth1  = 198001; 
%let mth2  = 198002; 
%let mth3  = 198003; 
%let Mths = 3; 

 
Using these macro variables, consider the following example.  The macro enables us to produce as many PRINT 
steps as required, without repeatedly copying the code.  The macro %do loop, iteratively processes while 
incrementing the macro variable i from 1 to the value of the &lmt parameter.  Note that &lmt is the macro 
parameter that is populated with the value of &Mths at macro invocation time. 
 

%macro print(lmt); 
 %do i = 1 %to &lmt; 
  title "Sales &&mth&i"; 
  proc print data = sales_&&mth&i noobs; 
  run; 
 %end; 
%mend print; 
 
%print(&Mths) 
 
 

Partial Log: 
The MLOGIC lines in the log show the incrementing / iterative activity of the %do loop.  The text 
generation nature of SAS macro can be appreciated when the MPRINT output is considered. 
 

MLOGIC(PRINT):  %DO loop index variable I is now 3; loop will  iterate again. 
SYMBOLGEN:  && resolves to &. 
SYMBOLGEN:  Macro variable I resolves to 3 
SYMBOLGEN:  Macro variable MTH3 resolves to 198003 
MPRINT(PRINT):   title "Sales 198003"; 
SYMBOLGEN:  && resolves to &. 
SYMBOLGEN:  Macro variable I resolves to 3 
SYMBOLGEN:  Macro variable MTH3 resolves to 198003 
MPRINT(PRINT):   proc print data = sales_198003 noobs; 
MPRINT(PRINT):   run; 
 
NOTE: There were 12 observations read from the data set WORK.SALES_198003. 
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NOTE: PROCEDURE PRINT used: 
 
 
MLOGIC(PRINT):  %DO loop index variable I is now 4; loop will not iterate again. 
MLOGIC(PRINT):  Ending execution. 
 

The %print macro generated the following code: 
 
title "Sales 198001"; 
proc print data = sales_198001 noobs; 
run; 
 
title "Sales 198002"; 
proc print data = sales_198002 noobs; 
run; 
 
title "Sales 198003"; 
proc print data = sales_198003 noobs; 
run; 
 

Partial Output: 
Sales 198003     
 
month     region            office           sales 
 
198003    Ontario             100          $22,835 
198003    Ontario             101         $119,763 
198003    Ontario             102          $49,361 
198003    Ontario             103          $32,024 
198003    Western Canada      200         $113,777 
198003    Western Canada      201         $119,663 
198003    Western Canada      202          $67,034 
198003    Western Canada      203          $65,641 
198003    Maritimes           300           $6,147 
198003    Maritimes           301           $8,218 

 

MANIPULATING MACRO VARIABLE CONTENTS 
In the previous example, the macro was iterating over a sequence or “array” of macro variables.  Sometimes, it’s 
advantageous to store all possible values in a delimited list in a single macro variable and extract the values one by 
one to process them individually. 
 
This example builds the list of values delimited by the pipe character, and stores them in a single macro variable.  
Note the use of separated by to ensure all values are stored in the macro variable.  The %rip_n_tear macro, 
that follows, will then parse the individual values from the &prodlist macro variable and use the individual values 
to build “data-driven” DATA steps. 

 
%macro ValueList(ds = , var = , mvar = inlist); 
 %global &mvar; 
 proc sql noprint; 
   select distinct &var 
     into :&mvar separated by '|' 
     from &ds ; 
 quit; 
%mend ValueList; 
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% ValueList ( ds = sashelp.prdsale, 
   var = product, 
   mvar = prodlist); 
%put ProdList contains &ProdList; 
 
 
Partial Log 
ProdList contains BED|CHAIR|DESK|SOFA|TABLE 

 
Now that the %ValueList macro has created the macro variable containing the pipe-delimited values, let’s have a 
look at %rip_n_tear.   The %rip_n_tear macro pulls the individual values from the &prodlist variable and 
uses them when building the DATA steps.  Note the use of %scan, a SAS-supplied macro function that works like 
its cousin scan.   None of the parameters of the %scan function are quoted since the macro facility is simply 
processing text; it has no notion of anything but text unless explicitly told so. 
 
And, it is possible to explicitly tell SAS to process numeric data arithmetically.  In the macro below we’re manually 
incrementing &i ( used as the word counter in the %scan function ) via: 
 

%let i = %eval( &i + 1 ); 
 
The %eval ( used for integer data, %sysevalf is the floating point counterpart ) function causes the macro 
processor to treat the stuff between the parenthesis as an arithmetic expression.  Without the %eval, the value of 
&i + 1 would be 5 characters long, ie:. the current value of &i and the characters + 1, a literal of  1 + 1. 

 
%macro rip_n_tear(ds = , ripvar = , var = ); 
    %let i = 1; 
 %do %until(%scan(&&&ripvar,&i,|) = ); 
  %let value = %scan(&&&ripvar,&i,|); 
 
  data data_&value; 
   set &ds;  

where &var = "&value"; 
  run;  
 
  %let i = %eval( &i + 1 ); 
 %end; 
 
%mend rip_n_tear; 
 
%rip_n_tear( ds = sashelp.prdsale,  
   var = product,  

ripvar = prodlist); 
 
Partial Log: 
 

MLOGIC(RIP_N_TEAR):  %LET (variable name is I) 
SYMBOLGEN:  Macro variable I resolves to 1 
SYMBOLGEN:  && resolves to &. 
SYMBOLGEN:  Macro variable RIPVAR resolves to prodlist 
SYMBOLGEN:  Macro variable PRODLIST resolves to BED|CHAIR|DESK|SOFA|TABLE 
SYMBOLGEN:  Macro variable I resolves to 2 
MLOGIC(RIP_N_TEAR):  %DO %UNTIL(%scan(&&&ripvar,&i,|) = ) condition is FALSE; loop 
will iterate again. 
MLOGIC(RIP_N_TEAR):  %LET (variable name is VALUE) 
SYMBOLGEN:  && resolves to &. 
SYMBOLGEN:  Macro variable RIPVAR resolves to prodlist 
SYMBOLGEN:  Macro variable PRODLIST resolves to BED|CHAIR|DESK|SOFA|TABLE 
SYMBOLGEN:  Macro variable I resolves to 2 
SYMBOLGEN:  Macro variable VALUE resolves to CHAIR 
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MPRINT(RIP_N_TEAR):   data data_CHAIR; 
SYMBOLGEN:  Macro variable DS resolves to sashelp.prdsale 
MPRINT(RIP_N_TEAR):   set sashelp.prdsale; 
SYMBOLGEN:  Macro variable VAR resolves to product 
SYMBOLGEN:  Macro variable VALUE resolves to CHAIR 
MPRINT(RIP_N_TEAR):   where product = "CHAIR"; 
MPRINT(RIP_N_TEAR):   run; 
 
NOTE: There were 288 observations read from the data set SASHELP.PRDSALE. 
      WHERE product='CHAIR'; 
NOTE: The data set WORK.DATA_CHAIR has 288 observations and 10 variables. 

 
The %until condition looks a little strange doesn’t it?  There’s nothing on the right side of the equal sign.  When 
the %scan function attempts to find the sixth item in the &prodlist value, it’ll find nothing, the same thing that’s on 
the right side of the equal sign.  ;-)  It works.   
 

FUNCTION STYLE MACROS 
Macros we’ve seen to this point generated complete, stand-alone SAS code.  However, macros can generate any 
amount of text, even code snippets that may not be a complete SAS step or even a complete statement.  Often 
these types of macros are known as “function-style” macros.  Function-style macros can be used to generate two 
different types of results: 

1) a snippet of code to be included in another SAS or macro statement 
2) an answer deduced with exclusively macro-code to be used in or outside of step boundaries 

 
Consider the following examples of function-style macros. 
 
You may have access to a data mart of SAS data sets where the many date values have all been stored in a 
numeric field in yyyymmdd format.  As we know, if dates are properly stored in internal SAS format, the many SAS 
date formats and functions can be brought to bear upon the date value to provide a wealth of programming and 
execution efficiencies.  Rather than writing the required nested input/put statements each time a date field is 
encountered, a function-style macro does the trick.    
 
The macro call is coded in the middle of the SAS IF statement.  Notice that a statement ending semi-colon is not 
specified on the macro call, nor is a semi-colon found inside the macro.  If either semi-colon had been specified the 
IF statement would have prematurely, and erroneously, terminated. 
 

%macro date(fld); 
 input(put(&fld,8.),yymmdd8.) 
%mend date; 
 
data a; 
 set b; 
 if %date(open_date) > '01Jan2005'd; 
run; 
 

Log: 
 

1784  data a; 
1785      set b; 
MLOGIC(DATE):  Beginning execution. 
1786      if %date(open_date) > '01Jan2005'd; 
MLOGIC(DATE):  Parameter FLD has value open_date 
SYMBOLGEN:  Macro variable FLD resolves to open_date 
MPRINT(DATE):   input(put(open_date,8.),yymmdd8.) 
MLOGIC(DATE):  Ending execution. 
1787 run; 
 

The advantage of the second type of “function-style” macro can be illustrated with the following example.  Consider 
an example where a Master data set is merged with a daily Transaction data set unless the Transaction data set 
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doesn’t exist or contains zero observations.  SAS provides a number of functions and/or coding solutions to 
ascertain the existence of a data set and the number of observations in the data set: 

• exist() function 
• number of observations is available via: 

• nobs = on SET statement 
• sashelp.vtable nobs value 
• attrn() function 

 
The existence and number of observations in a data set can be determined using the DATA step or SQL: 
 

%macro exist_obs; 
data _null_; 

  call symput('exist',exist('yourlib.transaction')); 
run; 

 
/*  Data step results in error if data set does NOT exist-must be conditioned 

*/ 
%if &exist = 1 %then %do; 

data _null_; 
   if 0 then set yourlib.transaction nobs = nobs; 
   call symputx('nobs',nobs);   * v9 only ; 
   stop; 

run; 
%end; 

%mend exist_obs; 
 
%exist_obs; 

 
Or, a simpler method using SQL: 
 

%let nobs = 0; 
proc sql; 
 select nobs into :nobs 
   from sashelp.vtable 
  where libname = 'YOURLIB' 
    and memname = 'TRANSACTION'; 
 %let exist = &sqlobs;  /* No rows returned if dataset doesn’t exist  */ 
quit; 
 
%put EXIST = &exist NOBS = &nobs; 

 
A macro-only solution is the most versatile.   As written, %attrn is a generic utility macro that may be used to 
retrieve any numeric data set attribute ( eg. CRDTE – data set creation date, MODTE – last modified date, NVARS 
– number of variables ) for any data set.  Note that the %attrn macro returns the number of observations via the 
bolded partial macro statement. 
 

%macro attrn(ds,attrib); 
 %let dsid = %sysfunc(open(&ds,is)); 

 %if &dsid >0 %then %do; 
         %sysfunc(attrn(&dsid,&attrib)); 
 %end; 
    %let rc = %sysfunc(close(&dsid)); 
%mend attrn; 
 

The decision to proceed with the Master / Transaction merge is made by another macro which verifies both the 
existence of the Transaction dataset and, using %attrn, the number of observations in it.  If both conditions are 
satisfied, the %do_merge macro is invoked to merge the Master / Transaction data sets. 
 

%macro check_transaction(ds); 
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 %if %sysfunc(exist(&ds)) %then %do; 
     %if %attrn(&ds,nobs) > 0 %then %do; 
   %do_merge 
     %end; %else %put No observations in &ds; 
 %end; %else %put &ds does NOT exist; 
%mend check_transaction; 
 
%check_transaction(yourlib.transaction); 

 

MISCELLANIES 
Helpful tidbits with no other home. 
 
Description v8 v9 
Check if a macro variable exists search SAS-L archives for a 

“macro variable exist whitlock” 
%symexist(mvar) or symexist(mvar) 

Delete a macro variable To assign a NULL value, use  
        %let mvar  = ; 

%symdel(mvar) or symdel(mvar) 

Define macro variable scope %global  %local 
Determine macro variable 
existence within scope 

 %symglobal(mvar), %symlocal(mvar), 
symglobal(mvar), symlocal(mvar) 

Copy macro variables from local to 
remote SAS/Connect environment 

%syslput 
 

Copy macro variables from remote 
to local SAS/Connect environment 

%sysrput 

Alter case of macro variable value, 
making %if comparisons case-
insensitive 

%lowcase 
%upcase 

Definitive guide to macro “quoting” 
or hiding meaning in macro 

Ian Whitlock's "A Serious Look at Macro Quoting" Paper 

 

CONCLUSION  
Is the SAS macro facility mysterious?  Not really, especially when it’s viewed as simple text replacement and text 
generation.  A number of examples have shown where macro’s text replacement functionality helps reduce coding 
effort, program maintenance, and potential for errors.  Macro code reduces repetition, allows the writing of modular 
code and the ability to control program flow.  
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