
 1

Spécial Foire aux questions

Ce numéro spécial de la foire aux questions de l'OASUS a été créé pour les rencontres

SAS de Montréal (MONSUG) et Québec du printemps 2015. Il s'agit d'un regroupement

de quelques unes des meilleures questions répondues lors des rencontres de l'OASUS à

Ottawa.

 2

Question 1 : Comment garder plusieurs copies d’un dataset?

Often, one needs to maintains multiple versions of a given dataset for historical/archival

as a well as backup/recovery purposes (there may be other reasons not as obvious). There

are different ways this could be done in SAS. For example, one could program a custom

solution in a SAS application that would enable versioning one or many datasets. This

custom solution would certainly add some complexity to the application.

Another approach could be to use the SAS audit trail facility which logs all the

modifications to a SAS data set during its lifecycle. It does not maintain multiple versions

of a data set however.

SAS has yet another facility called the Generation Data Sets. A generation data set is an

archived data set that is part of a generation data group. Under a generation data group,

each time a data set is replaced by a new one under the same name, a copy of the old

version is kept under a specific generation number. The most recent version is called the

base version. A generation data group is created when the dataset option GENMAX is

specified with a number greater than 0 (0 is the default and means that the generation data

sets feature is not in effect). This option specifies the maximum number of versions to

keep. The following example creates a generation data group with a maximum number of

versions of 4.

Except for the current version, each historical version of a data set in a generation data

group is stored using an absolute version number appended to its member name. The

absolute version starts with # and is followed with 3 digits. For example, for data set A:

A base (current) version

A#003 most recent historical version

A#002 second most recent historical version

A#001 oldest historical version.

When the maximum number of generations is reached, SAS will delete the oldest version

in order to keep only the number copies as specified by the GENMAX option.

Once you have a generation group created, how do you reference the various data sets

associated with it? First rule, except for the current version, never use the physical name

/* Dataset creation and first generation */

data testgen(genmax=4);

 input var1 $ var2 $;

 datalines;

a11 b11

a12 b12

;

 3

with the #. This will lead to a syntax error since data set names cannot contain a #!

Instead use the GENNUM data set option as followed:

GENNUM=0 : to access the current version. This is the default, so you don’t need to

specify it.

GENNUM=-x : to access the version x generations back. This is relative reference.

GENNUM=x : to access version x. This is an absolute reference.

The following example illustrates the concept.

To manage generation groups, it is recommended to use PROC DATASETS. PROC

DATASETS allows you to:

 Change the number of versions to be kept.

 Delete specific versions and an entire generation group.

 Rename versions

SAS generation data sets are a very handy and easy-to-use facility to keep multiple

versions of a dataset. Keep in mind however that the storage requirements of your SAS

application may increase quickly.

Reference :

SAS Global Forum Paper 253-31, Exploring SAS Generation Data Sets, Kirk Paul Lafler

/* Print most recent version */

title 'most recent version';

proc print data=testgen;

run;

/* Print generation back from the current version */

title 'Version -2';

proc print data=testgen(gennum=-2);

run;

/* Print generation #003 */

title 'Version #003';

proc print data=testgen(gennum=3);

run;

/* This file reference is invalid */

/* A valid SAS file name cannot contain an # */

title 'Version #003';

proc print data=testgen#003;

run;

 4

Question 2 : Les variables FIRST et LAST d’une étape DATA
sont très pratiques. Quel est l’équivalent avec PROC SQL?

The FIRST.variable and the LAST.variable relates to BY-group processing. These

variables identify the beginning and the end of a BY group, enabling special processing

for specific observations.

SQL is a set language and does not have advanced procedural constructs as is the case for

the DATA step. However, there are techniques to achieve similar results. In general, they

tend to be more complex that a simple BY group processing DATA step construct and

can possibly be much slower with large amount of data.

Here is an example using the SASHELP.CARS dataset. From that dataset, we want to

find the lowest 3 retail prices (variable: MSRP) by origin of the car (variable: Origin).

First, let’s look how you would do it with a DATA step. It is fairly simply for anyone

comfortable with the BASE SAS language. The code is intuitive and efficient.

/* Retrieve the lowest 3 MSRP by Origin using a DATA step. */

proc sort data=sashelp.cars out=CarsSorted;

 by Origin MSRP;

run;

data CarsResults(keep=Origin MSRP);

 retain group_count;

 set CarsSorted;

 by origin MSRP;

 if first.origin then

 group_count = 0;

 group_count = group_count + 1;

 if group_count =< 3 then

 output;

run;

 5

To achieve the same task in SQL requires some advanced notions of SQL. The code is

not as intuitive as for the DATA step and it does not perform very well with a large

amount of data.

There are other SQL techniques that can be used but exploring them is beyond the scope

of this exercise. The important point to be made is that SAS has a number of tools and

one should always select the tool that would perform best for the job at hand. The

resulting solution should also be relatively easy to comprehend for anyone who would

need to support it in the future.

PROC SQL is a tremendous tool but it does not replace the DATA step. As soon as one

needs to perform procedural processing, the DATA step should be considered first.

/* Retrieve the lowest 3 MSRP by Origin using a SQL. */

proc sql;

create table CarsResults2 as

select Origin, MSRP

 from sashelp.cars as tdo

 where (

 (select count(*) from sashelp.cars as tdi

 where

tdi.origin=tdo.origin

and tdi.MSRP < tdo.MSRP) <=2)

order by Origin, MSRP;

quit;

 6

Question 3 : Est-ce possible d’appeler une étape DATA à partir
d’une autre étape DATA ou même une PROC à partir d’une étape
DATA ?

Yes it is possible !

The simplest way is to use the functions DOSUB or DOSUBL available in SAS 9.4

(experimental in SAS 9.3).

DOSUB and DOSUBL are BASE SAS functions and submit any code that is passed to

them. Contrary to CALL EXECUTE, the code is executed immediately even within a

DATA step that is already running. The code can consist of one or many steps including

DATA steps and PROC steps! The difference between DOSUB and DOSUBL is that

DOSUB will execute code contained in a file whereas DOSUBL will execute code

passed as a string.

DOSUB and DOSUBL return a value of zero if SAS code was able to execute, and return

a nonzero value if SAS code was not able to execute.

Call a DATA inside a DATA step

Call a PROC inside a DATA step

data _null_;

 rc = dosubl('data x; y=1; run; %let abc=1;');

 abc=symget('abc');

 put abc=;

run;

data _null_;

 set x;

 put _all_;

run;

data _null_;

 rc = dosubl('proc sql;

 create table work.regions as

select distinct region

from sashelp.shoes;');

 putlog rc=;

run;

 7

Use of DOSUBL mimics a PROC FCMP function

References

Langston, Rick. 2013. "Submitting SAS® Code On The Side". Paper 032-

2013. SAS Global Forum 2013, San Francisco, California.

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf

/* This macro returns a list of variables contained in the */

/* in the specified dataset. */

%MACRO ExpandVarList(data=_LAST_, var=_ALL_);

 %if %upcase(%superq(data)) = _LAST_ %then

 %let data = &SYSLAST;

 %let rc = %sysfunc(dosubl(%str(

proc transpose data=&DATA(obs=0)

out=ExpandVarList_temp;

 var &VAR;

 run;

 proc sql noprint;

 select _name_ into :temp_varnames separated by ' '

 from ExpandVarList_temp

 ;

 drop table ExpandVarList_temp;

 quit;

)));

 &temp_varnames

%MEND ExpandVarList;

/* Use it as a macro "function" */

data newclass(keep=newvar1

%ExpandVarList(data=sashelp.class));

 newvar1=1;

 tempvar=0;

 set sashelp.class;

run;

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf

 8

Question 4 : Avec PROC EXPORT, est-ce possible de créer un
chiffrier Excel avec des colonnes dont la largeur s’ajuste
automatiquement?

PROC EXPORT creates basic Excel spreadsheets. It is not possible to issue Excel

commands such as autofit using it. To do so you require using DDE which is no longer

recommended since its support by Microsoft is uncertain (and it does not work well on

servers).

PROC EXPORT with DBMS=EXCEL

If you use PROC EXPORT with DBMS=EXCEL, SAS will use the Microsoft ACE or Jet

engine via the LIBNAME engine to do the conversion and will not resize the columns.

The only solution in this case is to post-process the spreadsheet (either manually or with

some Excel programming).

PROC EXPORT with DBMS=XLSX

If you use PROC EXPORT with DBMS=XLSX, then PROC EXPORT will use its own

translation engine which does a pretty good job at sizing the different columns properly.

This may be an interesting approach if you don't need to "stick" with the older Excel

format since it only supports the newer xlsx format.

/* PROC EXPORT with DBMS=excel does not autofit */

proc export data=sashelp.cars

outfile='c:\temp\CARSwithProcExport-DBMS=excel.xlsx' dbms =

excel replace;

run;

/* PROC EXPORT with DBMS=xlsx does autofit */

proc export data=sashelp.cars

outfile='c:\temp\CARSwithProcExport-DBMS=XLSX.xlsx' dbms = xlsx

replace;

run;

 9

ODS TAGSETS.EXCELXP

Another option is to switch to ODS TAGSETS.EXCELXP and specify column widths or

a default column width to use when the file is opened in Excel. This works because ODS

TAGSETS.EXCELXP creates a Spreadsheet Markup Language XML file which contains

syntax for specifying column widths. This is different from PROC EXPORT, which

exports SAS data to Excel binary format, but without any formatting instructions (such as

font, color or column widths). TAGSETS.EXCELXP, on the other hand, has a way to

specify DEFAULT_COLUMN_WIDTH, as well as ABSOLUTE_COLUMN_WIDTH --

which isn't exactly the same as AUTOFIT, but it does get you a bit closer to making

columns wider when they need to be.

ods tagsets.excelxp file="c:\temp\CARSwithODS.xml"

options(absolute_column_width="10,25,8,8,8,8,8,8,8,8,8,8,8,8,8"

 autofit_height="yes");

proc print data=sashelp.cars noobs;

run;

ods tagsets.excelxp close;

 10

 11

Question 5 : Est-ce possible de créer un fichier zip en SAS ?

Yes, it is possible!

With the ODS package destination.

With the FILENAME statement

Starting in SAS 9.4, it is also possible to write to (and to read from!) a zip file via the

FILENAME statement.

ods package(ZipOut) open nopf;

/* Add files to the package. You can also include a path if you

desire */

ods package(ZipOut) add file="&DataDir\air.txt" path='sashelp';

ods package(ZipOut) add file="&DataDir\class.txt" path='sashelp';

ods package(ZipOut) add file="&DataDir\cars.txt" path='sashelp';

/* Write out the package as a zip file */

ods package(ZipOut) publish archive

 properties(archive_name='ZipwithODS.zip'

 archive_path='c:\temp');

/* Close the package destination. Your zip file is now ready to

use! */

ods package(ZipOut) close;

filename infile "&DataDir";

filename zipfile ZIP 'c:\temp\ZipwithFilename.zip';

/* Write one text file to the zip file */

data _null_;

 infile infile(&File..txt) ;

 file zipfile(&File..txt);

input;

put _infile_;

 run;

%mend;

 12

References :

Hamilton, Jack. 2013. "Creating ZIP Files with ODS". Proceedings of the SAS Global

Forum 2013 Conference. Cary NC: SAS Institute Inc.

Langston, Rick. 2014. “Reading and Writing ZIP Files with SAS®”, Proceedings of the

SAS Global Forum 2014 Conference. Cary NC: SAS Institute Inc.

 13

Question 6 : Qu’est-ce PROC DOCUMENT? Pouvez –vous
donner un exemple?

PROC DOCUMENT is part of the ODS DOCUMENT facility which allows you to:

 Save an ODS output into a ODS document which is a repository for ODS

output, graphs and datasets;

 Replay the output to a specific format;

 Search and filter an ODS document;

 Add notes and change titles, footnotes, etc.

Before you can use PROC DOCUMENT, you have to create an ODS document by

directing your output to an ODS document destination instead of a destination such as pdf

or html that you would normally specify. The ODS document is saved in a special SAS

item store file but you can use the normal <libref.>member-name nomenclature to

designate the file. The following code provides an example:

Now that you have an ODS document, you use PROC DOCUMENT to replay the output

to another ODS destination:

ods document name=work.quickstart;

proc contents data=sashelp.cars ;

run;

proc means nmiss mean max min data=sashelp.cars;

class origin type;

run;

ods document close;

/* replay the ODS document into an html output */

/*ods html file="c:\temp\output1.html";*/

proc document name=work.quickstart;

 replay;

 run;

quit;

/*ods html close;*/

 14

You can keep adding to an existing ODS document by referring it as an ODS destination

in other blocks of code:

You can list the content of an existing ODS document:

You can replay only certain ODS objects stored in the ODS document. In order to do that

you need to understand how ODS names those objects and how they are organized.

Typically, each run of a procedure has a corresponding folder in the ODS document

which is named according to the name of the procedure and is assigned a sequence

number (example Freq#1). Sub-folders can also exist depending on the output produced

by the procedure and eventually individual ODS objects are stored in a specific folders.

You can replay specific object or all the objects contained within a folder.

/* Adding new content to a new ODS document */

ods document name=work.quickstart;

proc freq data=sashelp.cars;

 table origin * type / list;

 run;

ods document close;

/* Summary listing of the content of an ODS document*/

proc document name=work.quickstart;

 list;

 run;

quit;

/* Detailed listing of the content of an ODS document*/

proc document name=work.quickstart;

 list / levels=all details ;

 run;

quit;

/* Replaying only the objects generated by Freq#1 */

ods html file="c:\temp\output2.html";

proc document name=work.quickstart;

 replay freq#1;

 run;

quit;

ods html close;

 15

There are many other operations you can do with PROC DOCUMENT. The book listed

in reference is highly recommended to learn more.

Reference:

Tuchman, Michael. 2012. PROC DOCUMENT by Example Using SAS®. Cary, NC:

SAS Institute Inc.

