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Basic Organizational Ideas

Never throw anything away.
Know where to find everything.
Make the code reusable.
Automate as much as possible.
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File Organization

Files should be organized
by Company

Projects

by Name

Reports

by Date Given,
plus title or
description
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Report vs. Project

Report = relatively minor, one-time ad hoc.
Project = repeatedly updated with new data.
If it has a name, it’s a project.
Date rules:

The date given (not assigned).
If two turned in on same day, add a letter (10.07.22a,
10.07.22b).
To keep chronological order: Use YY.MM.DD.

Nate Derby Organizing SAS Files 5 / 26



Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Within a Report Directory

The calling program
Subdirectories:

Input
Macros
Output
SASData
Various other
subdirectories?
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Within a Project Directory

The calling program
Subdirectories:

Input
Macros
Output
SASData
Various other
subdirectories?
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Code Organization

Calling Program for a Report (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Reports\09.10.17 Sales Forecasts;

*where the root directory is located;

OPTIONS SASAUTOS=( "&root\Macros" ) MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

*%readData;

%analyzeData;

*%exportOutput;
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Code Organization

Calling Program for a Project (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Projects\Forecasts;
%LET exroot = C:\SAS\ExportToXL

%LET orig = SEA;
%LET dest = YQB;
%LET datecut = 7/25/16; *cutoff date for the data;
%LET hzn = 15; *forecast horizon;

OPTIONS SASAUTOS=( "&root\Macros", "&exroot" ) MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

*%readFormatData;

*reads and segments the input data set;

%makeForecasts( fnumber=1542 );

*produces the forecasts, cycling through various forecasting methods;

*%exportForecasts;

*exports the forecasts onto Excel spreadsheets;

%PUT DONE!; Nate Derby Organizing SAS Files 9 / 26
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Code Organization

The %makeSetup Macro (Figure 3, page 5)
%MACRO makeSetup;

OPTIONS ORIENTATION=landscape LINESIZE=150 PAGESIZE=60 NODATE NONUMBER
MCOMPILENOTE=NONE NOTES SOURCE;

%LOCAL dir1 dir2; %*these macro variables are only used here;
%GLOBAL outputroot enddate; %*these macro variables ar used in other macros;

%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'"; %*creates directory commands;
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX( 'dir1', dir1 );
CALL SYMPUTX( 'dir2', dir2 );
CALL SYMPUTX( 'enddate', INPUT( "&datecut", mmddyy8. ) );

RUN;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

LIBNAME rms "&root\Data";

%MEND makeSetup; Nate Derby Organizing SAS Files 10 / 26
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What’s Really Happening?

The %makeSetup Macro (Figure 3, page 5)
%MACRO makeSetup;

OPTIONS ORIENTATION=landscape LINESIZE=150 PAGESIZE=60 NODATE NONUMBER
MCOMPILENOTE=NONE NOTES SOURCE;

%LOCAL dir1 dir2; %*these macro variables are only used here;
%GLOBAL outputroot enddate; %*these macro variables ar used in other macros;

%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'"; %*creates directory commands;
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX( 'dir1', dir1 );
CALL SYMPUTX( 'dir2', dir2 );
CALL SYMPUTX( 'enddate', INPUT( "&datecut", mmddyy8. ) );

RUN;

%PUT dir1=&dir1;
%PUT dir2=&dir2;
%PUT enddate=&enddate;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

LIBNAME rms "&root\Data";

%MEND makeSetup;
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What’s Really Happening?

Calling Program for a Project (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Projects\Forecasts;
%LET exroot = C:\SAS\ExportToXL

%LET orig = SEA;
%LET dest = YQB;
%LET datecut = 7/25/16; *cutoff date for the data;
%LET hzn = 15; *forecast horizon;

OPTIONS SASAUTOS=( "&root\Macros", "&exroot" ) MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

Log Output
dir1='mkdir "C:\Files\RMS\Projects\Forecast\Output"'
dir2='mkdir "C:\Files\RMS\Projects\Forecast\Data"'
enddate=20660
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What’s Really Happening?

SAS Code
%LET root = C:\Files\RMS\Projects\Forecasts;
%LET datecut = 7/25/16;
%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'";
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX( 'dir1', dir1 );
CALL SYMPUTX( 'dir2', dir2 );
CALL SYMPUTX( 'enddate', INPUT( "&datecut", mmddyy8. ) );

RUN;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

Log Output
dir1='mkdir "C:\Files\RMS\Projects\Forecast\Output"'
dir2='mkdir "C:\Files\RMS\Projects\Forecast\Data"'
enddate=20660
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Why Use Recursion?
Implementation in Three Steps
Two Parameters

Basic Idea

Suppose we want to make forecasts for flight 1542:

%makeForecasts( fnumber=1542 );

Now we want to make forecasts for all flights:

%makeForecasts( fnumber=1542 );
%makeForecasts( fnumber=1543 );
%makeForecasts( fnumber=1544 );
%makeForecasts( fnumber=1545 );
%makeForecasts( fnumber=1546 );

Problems with above:

We have to list them out individually.
We have to find the right flight numbers.
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Better Idea

To make forecasts for flight 1542:

%makeForecasts( fnumber=1542 );

To make forecasts for all flights:

%makeForecasts;

Flight numbers are determined, listed automatically.

Easy for testing (test for one before performing for all)
Easy for drill-down (perform for all, then in depth for one)
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Step One

Define the macro for parameter:

%makeForecasts
%MACRO makeForecasts( fnumber );

[Code for making forecasts]

%MEND makeForecasts;
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Step One

Really easy example:

%makeForecasts
%MACRO makeForecasts( fnumber );

%PUT fnumber=&fnumber;

%MEND makeForecasts;
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Step Two

Step 2: Create auxiliary macro for getting flight numbers:

%getFlightNumbers
%MACRO getFlightNumbers;

PROC SQL NOPRINT;
SELECT DISTINCT flightnumber INTO :fnumbers
SEPARATED BY ''
FROM datasource
WHERE orig="&orig" AND dest="&dest"
ORDER BY by flightnumber;

QUIT;

%MEND getFlightNumbers;
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Step Three: Putting It All Together

%makeForecasts
%MACRO makeForecasts( fnumber=all );

%LOCAL i n fnumbers;
%IF &fnumber = all %THEN %DO;

%getFlightNumbers;

%LET i = 1;
%DO %WHILE( %LENGTH( %SCAN( &fnumbers, &i ) ) > 0 );
%LOCAL fnumber&i;
%LET fnumber&i = %SCAN( &fnumbers, &i );
%LET i = %EVAL( &i + 1 );
%END;
%LET n = %EVAL( &i - 1 );

%DO i=1 %TO &n;
%makeForecasts( fnumber=&&fnumber&i );
%END;

%GOTO theend;
%END;

%PUT fnumber=&fnumber;

%theend:

%MEND makeForecasts;
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Does It Work?

Macro call Log output

%makeForecasts; ⇒

fnumber=1542
fnumber=1543
fnumber=1544
fnumber=1545
fnumber=1546

%makeForecasts( fnumber=1542 ); ⇒ fnumber=1542
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Two Parameters

%makeForecasts
%MACRO makeForecasts( fnumber=all, method=all );

%LOCAL i n1 n2 fnumbers methods;
%IF &fnumber = all %THEN %DO;

%getFlightNumbers;

%LET i = 1;
%DO %WHILE( %LENGTH( %SCAN( &fnumbers, &i ) ) > 0 );
%LOCAL fnumber&i;
%LET fnumber&i = %SCAN( &fnumbers, &i );
%LET i = %EVAL( &i + 1 );
%END;
%LET n1 = %EVAL( &i - 1 );

%DO i=1 %TO &n1;
%makeForecasts( fnumber=&&fnumber&i, method=&method );
%END;

%GOTO theend;
%END;

...
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Two Parameters

%makeForecasts

...

%IF &method = all %THEN %DO;

%LET methods = AddPick ExSm ARIMA;

%LET i = 1;
%DO %WHILE( %LENGTH( %SCAN( &methods, &i ) ) > 0 );
%LOCAL method&i;
%LET method&i = %SCAN( &methods, &i );
%LET i = %EVAL( &i + 1 );
%END;
%LET n2 = %EVAL( &i - 1 );

%DO i=1 %TO &n2;
%makeForecasts( fnumber=&fnumber, method=&&method&i );
%END;

%GOTO theend;
%END;

%PUT fnumber=&fnumber;

%theend:

%MEND makeForecasts; Nate Derby Organizing SAS Files 22 / 26
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Two Parameters
Macro call Log output

%makeForecasts; ⇒

fnumber=1542, method=AddPick
fnumber=1542, method=ExSm
fnumber=1542, method=ARIMA
fnumber=1543, method=AddPick
fnumber=1543, method=ExSm
fnumber=1543, method=ARIMA
fnumber=1544, method=AddPick
fnumber=1544, method=ExSm
fnumber=1544, method=ARIMA
fnumber=1545, method=AddPick
fnumber=1545, method=ExSm
fnumber=1545, method=ARIMA
fnumber=1546, method=AddPick
fnumber=1546, method=ExSm
fnumber=1546, method=ARIMA

Nate Derby Organizing SAS Files 23 / 26



Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Two Parameters

Macro call Log output

%makeForecasts( method=ARIMA ); ⇒

fnumber=1542, method=ARIMA

fnumber=1543, method=ARIMA

fnumber=1544, method=ARIMA

fnumber=1545, method=ARIMA

fnumber=1546, method=ARIMA

%makeForecasts( fnumber=1542 ); ⇒
fnumber=1542, method=AddPick

fnumber=1542, method=ExSm

fnumber=1542, method=ARIMA

%makeForecasts( fnumber=1542, method=ARIMA ); ⇒ fnumber=1542, method=ARIMA
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Conclusions

Effective code organization incorporates reusability and
automation.
A recursive definition can make a macro more convenient.
Recursion can be applied to one or more parameters.
It can work especially well within a larger framework.
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Appendix

Further Resources

Kirk Paul Lafler.
Efficient SAS Programming Techniques.
Proceedings of the 25th SUGI Conference, 146-25, 2000.

Thomas J. Winn Jr.
Guidelines for Coding of SAS Programs.
Proceedings of the 29th SUGI Conference, 258-29, 2004.

Art Carpenter.
Carpenter’s Complete Guide to the SAS Macro Language, 3rd
Edition.
SAS Press, 2016.

nderby@stakana.com
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