
Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Guidelines for Organizing SAS Code
and Project Files

Nate Derby

Stakana Analytics
Seattle, WA

Club des Utilisateurs SAS de Québec
11/1/16

Nate Derby Organizing SAS Files 1 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Outline

1 Basic Organizational Ideas

2 File Organization

3 Code Organization

4 Using Recursion
Why Use Recursion?
Implementation in Three Steps
Two Parameters

5 Conclusions

Nate Derby Organizing SAS Files 2 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Basic Organizational Ideas

Never throw anything away.
Know where to find everything.
Make the code reusable.
Automate as much as possible.

Nate Derby Organizing SAS Files 3 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

File Organization

Files should be organized
by Company

Projects

by Name

Reports

by Date Given,
plus title or
description

Nate Derby Organizing SAS Files 4 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Report vs. Project

Report = relatively minor, one-time ad hoc.
Project = repeatedly updated with new data.
If it has a name, it’s a project.
Date rules:

The date given (not assigned).
If two turned in on same day, add a letter (10.07.22a,
10.07.22b).
To keep chronological order: Use YY.MM.DD.

Nate Derby Organizing SAS Files 5 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Within a Report Directory

The calling program
Subdirectories:

Input
Macros
Output
SASData
Various other
subdirectories?

Nate Derby Organizing SAS Files 6 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Within a Project Directory

The calling program
Subdirectories:

Input
Macros
Output
SASData
Various other
subdirectories?

Nate Derby Organizing SAS Files 7 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Code Organization

Calling Program for a Report (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Reports\09.10.17 Sales Forecasts;

*where the root directory is located;

OPTIONS SASAUTOS=("&root\Macros") MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

*%readData;

%analyzeData;

*%exportOutput;

Nate Derby Organizing SAS Files 8 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Code Organization

Calling Program for a Project (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Projects\Forecasts;
%LET exroot = C:\SAS\ExportToXL

%LET orig = SEA;
%LET dest = YQB;
%LET datecut = 7/25/16; *cutoff date for the data;
%LET hzn = 15; *forecast horizon;

OPTIONS SASAUTOS=("&root\Macros", "&exroot") MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

*%readFormatData;

*reads and segments the input data set;

%makeForecasts(fnumber=1542);

*produces the forecasts, cycling through various forecasting methods;

*%exportForecasts;

*exports the forecasts onto Excel spreadsheets;

%PUT DONE!; Nate Derby Organizing SAS Files 9 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Code Organization

The %makeSetup Macro (Figure 3, page 5)
%MACRO makeSetup;

OPTIONS ORIENTATION=landscape LINESIZE=150 PAGESIZE=60 NODATE NONUMBER
MCOMPILENOTE=NONE NOTES SOURCE;

%LOCAL dir1 dir2; %*these macro variables are only used here;
%GLOBAL outputroot enddate; %*these macro variables ar used in other macros;

%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'"; %*creates directory commands;
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX('dir1', dir1);
CALL SYMPUTX('dir2', dir2);
CALL SYMPUTX('enddate', INPUT("&datecut", mmddyy8.));

RUN;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

LIBNAME rms "&root\Data";

%MEND makeSetup; Nate Derby Organizing SAS Files 10 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

What’s Really Happening?

The %makeSetup Macro (Figure 3, page 5)
%MACRO makeSetup;

OPTIONS ORIENTATION=landscape LINESIZE=150 PAGESIZE=60 NODATE NONUMBER
MCOMPILENOTE=NONE NOTES SOURCE;

%LOCAL dir1 dir2; %*these macro variables are only used here;
%GLOBAL outputroot enddate; %*these macro variables ar used in other macros;

%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'"; %*creates directory commands;
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX('dir1', dir1);
CALL SYMPUTX('dir2', dir2);
CALL SYMPUTX('enddate', INPUT("&datecut", mmddyy8.));

RUN;

%PUT dir1=&dir1;
%PUT dir2=&dir2;
%PUT enddate=&enddate;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

LIBNAME rms "&root\Data";

%MEND makeSetup;

Nate Derby Organizing SAS Files 11 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

What’s Really Happening?

Calling Program for a Project (Figure 2, page 4)
DM 'output' clear;
DM 'log' clear;

%LET root = C:\Files\RMS\Projects\Forecasts;
%LET exroot = C:\SAS\ExportToXL

%LET orig = SEA;
%LET dest = YQB;
%LET datecut = 7/25/16; *cutoff date for the data;
%LET hzn = 15; *forecast horizon;

OPTIONS SASAUTOS=("&root\Macros", "&exroot") MAUTOSOURCE;

%makeSetup;

*makes the setup structures. FURTHER FUNCTIONALITY WILL NOT WORK IF COMMENTED OUT;

Log Output
dir1='mkdir "C:\Files\RMS\Projects\Forecast\Output"'
dir2='mkdir "C:\Files\RMS\Projects\Forecast\Data"'
enddate=20660

Nate Derby Organizing SAS Files 12 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

What’s Really Happening?

SAS Code
%LET root = C:\Files\RMS\Projects\Forecasts;
%LET datecut = 7/25/16;
%LET outputroot = &root\Output;

DATA _NULL_;
dir1 = "'"||'mkdir'||' "'||"&outputroot"||'"'||"'";
dir2 = "'"||'mkdir'||' "'||"&root\Data"||'"'||"'";
CALL SYMPUTX('dir1', dir1);
CALL SYMPUTX('dir2', dir2);
CALL SYMPUTX('enddate', INPUT("&datecut", mmddyy8.));

RUN;

DATA _NULL_; %*makes the directories for the graphics;
SYSTASK COMMAND &dir1 WAIT;
SYSTASK COMMAND &dir2 WAIT;

RUN;

Log Output
dir1='mkdir "C:\Files\RMS\Projects\Forecast\Output"'
dir2='mkdir "C:\Files\RMS\Projects\Forecast\Data"'
enddate=20660

Nate Derby Organizing SAS Files 13 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Basic Idea

Suppose we want to make forecasts for flight 1542:

%makeForecasts(fnumber=1542);

Now we want to make forecasts for all flights:

%makeForecasts(fnumber=1542);
%makeForecasts(fnumber=1543);
%makeForecasts(fnumber=1544);
%makeForecasts(fnumber=1545);
%makeForecasts(fnumber=1546);

Problems with above:

We have to list them out individually.
We have to find the right flight numbers.

Nate Derby Organizing SAS Files 14 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Better Idea

To make forecasts for flight 1542:

%makeForecasts(fnumber=1542);

To make forecasts for all flights:

%makeForecasts;

Flight numbers are determined, listed automatically.

Easy for testing (test for one before performing for all)
Easy for drill-down (perform for all, then in depth for one)

Nate Derby Organizing SAS Files 15 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Step One

Define the macro for parameter:

%makeForecasts
%MACRO makeForecasts(fnumber);

[Code for making forecasts]

%MEND makeForecasts;

Nate Derby Organizing SAS Files 16 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Step One

Really easy example:

%makeForecasts
%MACRO makeForecasts(fnumber);

%PUT fnumber=&fnumber;

%MEND makeForecasts;

Nate Derby Organizing SAS Files 17 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Step Two

Step 2: Create auxiliary macro for getting flight numbers:

%getFlightNumbers
%MACRO getFlightNumbers;

PROC SQL NOPRINT;
SELECT DISTINCT flightnumber INTO :fnumbers
SEPARATED BY ''
FROM datasource
WHERE orig="&orig" AND dest="&dest"
ORDER BY by flightnumber;

QUIT;

%MEND getFlightNumbers;

Nate Derby Organizing SAS Files 18 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Step Three: Putting It All Together

%makeForecasts
%MACRO makeForecasts(fnumber=all);

%LOCAL i n fnumbers;
%IF &fnumber = all %THEN %DO;

%getFlightNumbers;

%LET i = 1;
%DO %WHILE(%LENGTH(%SCAN(&fnumbers, &i)) > 0);
%LOCAL fnumber&i;
%LET fnumber&i = %SCAN(&fnumbers, &i);
%LET i = %EVAL(&i + 1);
%END;
%LET n = %EVAL(&i - 1);

%DO i=1 %TO &n;
%makeForecasts(fnumber=&&fnumber&i);
%END;

%GOTO theend;
%END;

%PUT fnumber=&fnumber;

%theend:

%MEND makeForecasts;
Nate Derby Organizing SAS Files 19 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Does It Work?

Macro call Log output

%makeForecasts; ⇒

fnumber=1542
fnumber=1543
fnumber=1544
fnumber=1545
fnumber=1546

%makeForecasts(fnumber=1542); ⇒ fnumber=1542

Nate Derby Organizing SAS Files 20 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Two Parameters

%makeForecasts
%MACRO makeForecasts(fnumber=all, method=all);

%LOCAL i n1 n2 fnumbers methods;
%IF &fnumber = all %THEN %DO;

%getFlightNumbers;

%LET i = 1;
%DO %WHILE(%LENGTH(%SCAN(&fnumbers, &i)) > 0);
%LOCAL fnumber&i;
%LET fnumber&i = %SCAN(&fnumbers, &i);
%LET i = %EVAL(&i + 1);
%END;
%LET n1 = %EVAL(&i - 1);

%DO i=1 %TO &n1;
%makeForecasts(fnumber=&&fnumber&i, method=&method);
%END;

%GOTO theend;
%END;

...

Nate Derby Organizing SAS Files 21 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Two Parameters

%makeForecasts

...

%IF &method = all %THEN %DO;

%LET methods = AddPick ExSm ARIMA;

%LET i = 1;
%DO %WHILE(%LENGTH(%SCAN(&methods, &i)) > 0);
%LOCAL method&i;
%LET method&i = %SCAN(&methods, &i);
%LET i = %EVAL(&i + 1);
%END;
%LET n2 = %EVAL(&i - 1);

%DO i=1 %TO &n2;
%makeForecasts(fnumber=&fnumber, method=&&method&i);
%END;

%GOTO theend;
%END;

%PUT fnumber=&fnumber;

%theend:

%MEND makeForecasts; Nate Derby Organizing SAS Files 22 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Two Parameters
Macro call Log output

%makeForecasts; ⇒

fnumber=1542, method=AddPick
fnumber=1542, method=ExSm
fnumber=1542, method=ARIMA
fnumber=1543, method=AddPick
fnumber=1543, method=ExSm
fnumber=1543, method=ARIMA
fnumber=1544, method=AddPick
fnumber=1544, method=ExSm
fnumber=1544, method=ARIMA
fnumber=1545, method=AddPick
fnumber=1545, method=ExSm
fnumber=1545, method=ARIMA
fnumber=1546, method=AddPick
fnumber=1546, method=ExSm
fnumber=1546, method=ARIMA

Nate Derby Organizing SAS Files 23 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Why Use Recursion?
Implementation in Three Steps
Two Parameters

Two Parameters

Macro call Log output

%makeForecasts(method=ARIMA); ⇒

fnumber=1542, method=ARIMA

fnumber=1543, method=ARIMA

fnumber=1544, method=ARIMA

fnumber=1545, method=ARIMA

fnumber=1546, method=ARIMA

%makeForecasts(fnumber=1542); ⇒
fnumber=1542, method=AddPick

fnumber=1542, method=ExSm

fnumber=1542, method=ARIMA

%makeForecasts(fnumber=1542, method=ARIMA); ⇒ fnumber=1542, method=ARIMA

Nate Derby Organizing SAS Files 24 / 26

Basic Organizational Ideas
File Organization

Code Organization
Using Recursion

Conclusions

Conclusions

Effective code organization incorporates reusability and
automation.
A recursive definition can make a macro more convenient.
Recursion can be applied to one or more parameters.
It can work especially well within a larger framework.

Nate Derby Organizing SAS Files 25 / 26

Appendix

Further Resources

Kirk Paul Lafler.
Efficient SAS Programming Techniques.
Proceedings of the 25th SUGI Conference, 146-25, 2000.

Thomas J. Winn Jr.
Guidelines for Coding of SAS Programs.
Proceedings of the 29th SUGI Conference, 258-29, 2004.

Art Carpenter.
Carpenter’s Complete Guide to the SAS Macro Language, 3rd
Edition.
SAS Press, 2016.

nderby@stakana.com

Nate Derby Organizing SAS Files 26 / 26

	Basic Organizational Ideas
	File Organization
	Code Organization
	Using Recursion
	Why Use Recursion?
	Implementation in Three Steps
	Two Parameters

	Conclusions
	Appendix

