
© CodeCrafters, Inc. Page 1 of 10

Dictionary Tables and Views: Essential Tools for Serious Applications
Frank DiIorio, CodeCrafters, Inc., Chapel Hill NC

Jeff Abolafia, Rho, Inc., Chapel Hill NC

INTRODUCTION

Dictionary tables were introduced to the SAS System in the early
1990’s, in Version 6.07. Laden with information that is often
difficult, and sometimes impossible, to get through other means,
they still appear to be on the outside of many programmers’ Bag
of Tricks. This is both perplexing and unfortunate for as we will
see in this paper, once their content and organization is
understood, they are readily adapted for a range of applications
that, to use an old saw, “are only limited by your imagination.”

This paper describes dictionary tables and their associated
SASHELP library views. It:
• presents scenarios that show how they can be used
• gives high-level descriptions of some of the more important

(a relative term, to be sure) tables
• identifies features of SQL and the macro language that are

commonly used when writing programs that effectively use
the tables

• shows examples of the tables’ use, emphasizing the use of
SQL and the macro language interface

The reader should come away from the discussion with an
understanding of the tables as well as with a checklist of SQL
skills that are required to use the tables most effectively.

CONSIDER THE ALTERNATIVES

SAS programmers, particularly those writing utilities, have always
needed high-level information about the SAS environment (option
settings, data set characteristics, etc.). Consider a few realistic
scenarios and the coding strategy required, both not using and
using the dictionary tables:
• You want to insert the name of the current (Windows OS)

directory in a footnote.
Without the tables: use a _NULL_ DATA step to write a
temporary file, then parse the SAS Log to identify the file’s
location. Ugh!
Using the tables: allocate a file name of ‘.’, then store the
EXTFILES table’s XPATH value of the filename in a macro
variable. See Example 2 for details.

• As part of “resetting” the SAS environment in an interactive
session, you want to delete all global macro variables.
Without the tables: set the MVARSIZE system option to 0
(forcing all global macro variables to be written to a catalog,
rather than be held in memory), then delete entries of type
MACRO from the catalog. Depending on the number and
length of the macro variables, the I/O required by this
technique can affect performance. Ugh!
Using the tables: using the MACROS table, save the names
of the global macro variables, then use %SYMDEL. See
Example 4 for details.

• A project uses numerous SAS datasets, some of them with
like-named variables. You want to identify instances of like-
named variables with conflicting data types or lengths. For
example, the variable GENDER may be stored as a char-
acter, length 1 in one dataset and numeric, length 3 in an-
other. Ugh!

Without the tables: create an output data set from the
CONTENTS procedure, then sort by variable name, and flag
inconsistencies in a DATA step.
Using the tables: use the COLUMNS dictionary table and
SQL to create a data set containing the errant variables.
See Example 1 for details.

• You want to print the first “n” observations from every data
set in a library.
Without the tables: write a macro parameterized for data set
name and number of observations to print. Then, invoke the
macro, manually specifying the data sets in the library.
Alternately, use the CONTENTS procedure to programmat-
ically acquire a list of data set names in the library, then use
CALL EXECUTE to invoke the macro. Again, ugh!
Using the tables: use the COLUMNS dictionary table and
SQL to create a data set ready for a reporting procedure
(PRINT, REPORT, et al.). See Example 8 for details.

ABOUT THE TABLES

Dictionary tables make these tasks and others feasible with a
minimal amount of coding effort. Let’s take a look at some of their
characteristics. They are:
• Metadata, or “data about data.” They are data that are one

or more steps away from operational or summary data,
which is what most people think of when they hear “data.”
Rather than containing salary levels, event codes, dosage
levels, and the like, metadata identify the dataset containing
the data, its creation date, the data type of the variables, and
a host of other high-level details.

• Available only in Version 6.07 or later (hopefully this isn’t an
issue for anyone!)

• Always and automatically created during SAS System
startup. There is no system option to suppress their creation
or maintenance.

• Automatically maintained during the course of the
interactive session or batch job.

• Read-only. You cannot change the table or view organiza-
tion. You can affect their contents by making changes in the
SAS environment. Whenever you change a system option,
create a dataset, delete a member from a catalog, add a la-
bel to a variable, etc. one or more tables are updated.

• Accessible from SQL with the reserved LIBNAME of
DICTIONARY (yes, that’s a 10-letter LIBNAME!)

• Accessible outside SQL by using views defined in the
LIBNAME of SASHELP. SASHELP is allocated automati-
cally during startup.

• Usually more efficient when accessed from SQL. That is,
using SQL to access, say, DICTIONARY.TABLES will
usually execute faster than SQL, a DATA step, or a
procedure reading SASHELP.VTABLE.

So much for what they are. Let’s take a look at what’s inside
them.

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 2 of 10

WHAT’S OUT THERE?

Before you can use the tables, you have to know what tables are
available. In addition to this paper, there are several sources.

SAS Online Doc. Enter “dictionary tables” as the search term.

Viewtable. While in an interactive SAS session, use SAS
Explorer to display the contents of the SASHELP library. The
views of the dictionary tables begin with ‘V’. Double-click on any
‘V’ object to invoke Viewtable to display its contents.

Alternately, if you know the object’s name, enter ‘viewtable
object_name’ on the command line. For example, to see the view
of the OPTIONS table, enter the following in the command line:

viewtable sashelp.voption

Viewtable is the ideal tool for gaining familiarity with the contents
of the tables. You can browse the data, adjust the order of
columns, and utilize the viewer to get an understanding of the
data that would be difficult to gain from the documentation or
PRINT procedure output alone.

CONTENTS. Provided you know the name of the view, you can
use the CONTENTS procedure (or the CONTENTS statement in
the DATASETS procedure) as follows:

proc contents data=sashelp.view;

In the above, view is the name of the view of interest (vcolumn,
vcatalg, etc.).

SQL. The DESCRIBE statement in the SQL procedure provides
some of the same information as CONTENTS. Results are
written by default to the SAS Log. Examples for tables and views
follow:

describe table dictionary.table;
describe view sashelp.view;

Sample output from both forms of the statement follow Exhibit 1,
below.

Programmatically, via a Macro. You can list the attributes (not
the contents) of the tables and views programmatically. A macro
to do this is shown below:

EXHIBIT 1: PROGRAMMATIC LISTING OF TABLE ATTRIBUTES
%macro DictInfo;
 proc sql noprint;
 %if %scan(&sysver., 1) = 9 %then %do;
 select distinct memname,
 count(distinct memname)
 into :tbl separated by ' ', :ntbl
 from dictionary.dictionaries ;
 %end;
 %else %do;
 %let tbl = CATALOGS COLUMNS
 EXTFILES INDEXES
 MACROS MEMBERS
 OPTIONS STYLES
 TABLES TITLES
 VIEWS;
 %let ntbl = 11;
 %end;
 select memname,
 count(distinct memname)
 into :view separated by ' ',
 :nview
 from dictionary.views
 where memname like "V%" and
 libname = 'SASHELP' and
 memtype = 'VIEW' ;
 %do i = 1 %to &ntbl.;
 %let item = %scan(&tbl., &i.);
 describe table dictionary.&item.;
 %end;

 %do i = 1 %to &nview.;
 %let item = %scan(&view., &i.);
 describe view sashelp.&item.;
 %end;
 quit;
%mend;

The macro uses SQL to write a description of each table to the
SAS Log. The following, for example, is the description of the
EXTFILES table.

NOTE: SQL table DICTIONARY.EXTFILES was
created like:

create table DICTIONARY.EXTFILES
 (
 fileref char(8) label='Fileref',
 xpath char(1024) label='Path Name',
 xengine char(8) label='Engine Name'
);

The SQL output for Views is usually a bit more compact. For the
EXTFILES table references above, we see:

NOTE: SQL view SASHELP.VEXTFL is defined as:

 select *
 from DICTIONARY.EXTFILES;

It’s important to emphasize that these tools simply identify what is
available for use. Actually understanding their usefulness,
nuances, and quirks is a bit of an art, most effectively developed
while meeting real-world needs.

TABLE AND VIEW ORGANIZATION

SAS Version 9 supports 22 dictionary tables (available in SQL)
and 29 views of the tables (available with the reserved LIBNAME
of SASHELP). Version 8 supports 11 tables and 17 views. The
tables and their relationship to the views are presented in Exhibit
2.

EXHIBIT 2: TABLE-VIEW CORRESPONDENCE

DICTIONARY.table

SASHELP.view

Earliest
Version1

catalogs vcatalg 6.07
check_constraints vchkcon 9.0
columns vcolumn 6.07
constraint_column_usage vcncolu 9.0
constraint_table_usage vcntabu 9.0
dictionaries vdctnry 9.0
engines vengine 8.0
extfiles vextfl 6.07
formats vformat 9.0
goptions vgopt, vallopt2 9.0
indexes vindex 6.07
libnames vlibnam 9.0
macros vmacro 6.11
members vmember, vsacces,

vscatlg, vslib,
vstable, vsview,
vstabvw

6.07

options voption, vallopt2 6.07
referential_constraints vrefcon 9.0
remember vrememb 9.0
styles vstyle 8.0
tables vtable 6.07
table_constraints vtabcon 9.0
titles vtitle 6.11
views vview 6.07

Notes:

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 3 of 10

1 This is the first version that had the table and view. Readers
familiar with the tables should note that some of the older,
familiar tables have new fields in Version 9. Notable among
these are TABLES and COLUMNS.
Note, too, that some fields have subtly different content in
Version 9 – CRDATE and MODATE in TABLES, for example, is
now a date-time value, rather than a simple date value.

2 VALLOPT has all rows and columns from the GOPTIONS and
OPTIONS tables.

The remainder of this section is devoted to descriptions of some
of the more popular tables. “Popular” is, of course, a loaded term.
In this context, it simply means tables that the authors have used
most frequently in their daily work. Descriptions of most of the
other tables are found in Appendix A. Exhibit 3, below, explains
the format of the table descriptions.

EXHIBIT 3: TABLE DESCRIPTION FORMAT

COLUMNS
Content: Information about variables in currently allocated data
sets and views. See Exhibit 4 for details.

Granularity: Variable in a data set or view.
Comments:
[1] Users familiar with this table should pay particular attention to

new fields in Version 9.
[2] Variable NAME, containing the name of a variable, is stored

with the upper-lower case mix used at its creation. Subsetting
on NAME should, therefore, either be explicit about case or
use a function to fold NAME to consistently upper or lower-
case.

[3] Users of CONTENTS output data sets will be relieved to see
the inscrutable-but-predictable 1-2 TYPE values replaced by
the dictionary table’s more straightforward ‘num’ and ‘char’.

[4] There are some situations where using a CONTENTS
procedure output dataset is more effective than the dictionary
tables and views. This is because these data sets are not
normalized, unlike the dictionary tables.
A CONTENTS data set will have information at both the table
and variable levels in the same observation (e.g., number of
observations, number of variables, individual variable name,
type, and length). Getting the same information from the
dictionary tables requires a join of the MEMBERS,
COLUMNS, and INDEXES tables.
This is not a huge problem, but is generally not as convenient
as the “old” way. Indeed, there are items in the CONTENTS
data sets that are simply not available anywhere in the
dictionary data. Among these are whether the NODUPREC
and NODUPKEY options were used during creation of the
data set.

Used in Examples: 1, 5, 6.

MACROS
Content:.Values of all current macro variables. See Exhibit 5 for
details.

Granularity: Macro scope, name, and offset.

Comments: Long (greater than 200 character) values are broken
into multiple observations, then distinguished by their offset value
(first observation is offset 0, next is 200, and so on). To work with

unique macro variable names, use a WHERE clause like “offset =
0”.
Used in Examples: 3, 4.

Exhibit 4: COLUMNS Table

 libname $8 Library name [upper case]
 memname $32 Member name [upper case]
 memtype $8 Member type [DATA|VIEW]

 name $32 Column name [case as-is from data set
creation]

type $4 Column type [char|num]
length num Column length

npos num Column position [offset within observation,
e.g., 0, 1, 20]

varnum num Column number in table [1, 2, 3, …]
label $256 Column label
format $16 Column format [DATE9. $HEX22.]
informat $16 Column informat [MMDDYY10. 8.2]

idxusage $9 Column index type [SIMPLE|COMPOSITE|-
BOTH]

sortedby num Order in key sequence [0, 1, 2, …]
xtype $12 Extended type
notnull $3 Not NULL? [no|yes]
precision num Precision
scale num Scale

dictionary.columns
sashelp.vcolumn

Exhibit 5: MACROS Table

 scope $9 Macro scope [GLOBAL | AUTOMATIC |
macro_name if local]

 name $32 Macro variable name [upper case]
 offset num Offset into macro variable [0, 200, …]

value $200 Macro variable value [case and spacing are
preserved]

dictionary.macros
sashelp.vmacro

MEMBERS
Content: Information about SAS data stores – data sets, views,
template item stores, catalogs, MDDB, etc. See Exhibit 6 for
details.

Granularity: Unique combination of library name, entity name, and
entity type.

Comments:
 [1] The views of this table facilitate subsetting by entity type

(VSTABLE selects only data sets) and library (VSLIB is useful
when identifying a physical path for a LIBNAME).

[2] See Note 4 in the description of the COLUMNS table, above.

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 4 of 10

Exhibit 6: MEMBERS Table

memtype=
‘ACCESS’

memtype=
‘CATALOG’

distinct
LIBNAME

memtype=
“DATA”

memtype=
“VIEW”

memtype=
“VIEW”
“DATA”

all fields, all rows from dictionary table

sashelp.vmember

 libname $8 Library name [upper case]
 memname $32 Member name [upper case]
 memtype $8 Member type [DATA|VIEW|ITEMSTOR| …]

engine $8 Engine name [upper case]
index $32 Indexes [yes|no] [not index names!]

path $1024
Path name [mixed case] [if concatenated,
enclosed in parentheses, each path name
quoted; otherwise, no parentheses or quotes]

dictionary.members

 libname
 memname

sashelp.vstable

 libname
 memname

sashelp.vsacces

 libname
 memname

sashelp.vscatlg

 libname
path
sashelp.vslib

 libname
 memname

sashelp.vsview

 memname
memtype

 libname
sashelp.vstabvw

OPTIONS / GOPTIONS
Content: Information about Base SAS and SAS/GRAPH options.
See Exhibit 7 for details.

Granularity: Option.

Comments:
[1] The OPTDESC field contains brief, useful descriptions of the

option.
[2] The GETOPTION function, used with the KEYWORD

parameter, provides a useful and somewhat more powerful
way to retrieve option settings.

Used in Example: 12.

Exhibit 7: OPTIONS Table

 optname $32 Option name [upper case]
setting $1024 Option setting [mixed case]
optdesc $160 Option description
level $8 Option location [Portable|Host]

group $32 Option group [upper case]
[MACRO|SORT|ENVFILES| …]

dictionary.options
sashelp.voption

TABLES
Content: Information about data sets and views. See Exhibit 8
for details.

Granularity: Unique combinations of library name, data set/view
name.

Comments: Users familiar with this table should pay particular
attention to new fields in Version 9. Also note the DATETIME
formats and informats associated with CRDATE and MODATE.
These used to be date values. The increased date-time precision
is a welcome change, but is also one that will require modification
of Version 8 programs that use these values.

Used in Examples: 8, 9, 10, 11.

Exhibit 8: TABLES Table

TITLES
Content: Current titles and footnotes. See Exhibit 9 for details.

Granularity: Title / footnote

Comments: Only the first 256 characters of a title or footnote are
stored.

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 5 of 10

Exhibit 9: TITLES Table

 type $1 Title location [T|F]
 number num Title number [1|…|10]

text $256 Title text

dictionary.titles
sashelp.vtitle

TOOLS TO PUT THE TABLES TO WORK
Ask “n” SAS programmers for a solution to a problem and you’ll
get at least “n” distinct answers! Almost all SAS users would
acknowledge that it is a robust tool. At the same time, though,
one would be hard-pressed to argue that effective use of the
metadata described in this paper would not require familiarity with
Structured Query Language (SQL) and the macro language.

It’s no accident that each of the examples below employs SQL
and most use the macro language. Its table-joining ability, ease
of identifying group characteristics, and macro language interface
make it the ideal tool for building applications with the SAS
metadata.

The macro language’s ability to conditionally execute some of, all
of, or multiple statements, along with the %SYSFUNC function’s
on-the-fly use of common functions, provides the programmer
with a powerful toolset for building powerful, generalized utilities.

Exhibit 10 identifies some of the features of SQL and briefly
describes why they are useful for building applications using the
metadata. A complete description of each feature is well beyond
the scope of this paper. The Exhibit is simply intended to be a
starting point, based on the authors’ experience, of key SQL
features used in building metadata-based applications.

Exhibit 10: Key SQL Features

Feature

Why Important?

Macro language
interface (INTO,
SEPARATED BY)

Store counts, lists, etc. in macro
variables, which can be used for macro
language decision-making and other
purposes

SQLOBS macro
variable

Automatic, reliable indicator of size of an
executed query

SELECT statement Specifies columns to retrieve; can be
used to perform calculations and format
retrieved columns

GROUP BY clause,
HAVING
expression

Data referred to in SELECT can be
collapsed into groups meeting one or
more criteria

WHERE expression Filter data from table(s) based on one or
more criteria

Exhibit 11 identifies key macro language features used in
metadata-based programs. As with the SQL discussion, above,
we do not enter the syntax and usage thicket. The table simply
identifies parts of the language the authors most frequently use.

Exhibit 11: Key Macro Language Features

Feature

Why Important?

keyword
parameters in
macro definition

Clarity. The user doesn’t have to
remember the meaning of numerous
positional parameters

Iterative %DO Repeat an operation “n” times, where “n”
might be specified by preceding SQL
operations

%IF-%THEN Conditional execution, possibly based on
results from preceding SQL operation on
metadata

%SYSFUNC Use DATA step functions outside the
DATA step, in any context acceptable for
a call to a macro function. Result can be
a macro variable or part of %IF-%THEN
decision-making

Quoting functions Useful for generalizing code (allows
program to proceed with unanticipated
inputs)

Finally, on the subject of “must have” tools, consider how much of
the use of the tables takes place. Tables are often used as part
of generalized code, or utilities. Rather than hard-code the
statements needed for printing from every data set in a library, we
generalize the code and print from a library specified via a macro
parameter. The best way of providing access to these utilities is
to store them in one or more macro libraries and make them
available to all programs via the AUTOCALL option. A
representative example follows:

options mautocall
 sasautos=(‘j:\common\macros’,
 ‘s:\client1\proj244\macros’)
 ;

Thus we see the importance of macro language system options
as well as the language statements themselves.

EXAMPLES

There are many applications for the information contained in the
dictionary tables. In this section we present a series of examples
taken from “real world” applications. These are summarized in
Exhibit 11. Application background, code and, when appropriate,
output are shown. Notice that most of the examples show the
tables and views used as part of macros. This is in keeping with
the high-level, meta-data nature of the information. Abstracted
information and generalized tools such as macros are a logical,
complementary fit.

Exhibit 11: Index of Examples

Description

Tables
Used

Other
Features

1 Locate variables with
conflicting type or length

columns GROUP BY
HAVING
COUNT()

2 Identify current directory extfiles macro
interface

3 Identify all global macro
variables

macros ORDER BY

4 Delete global macro variables macros macro
interface

5 Identify variables meeting
criteria

columns macro
interface
%IF-%THEN

6 Identify features incompatible
with transport format

columns WHERE

7 Generate code from SQL SELECT
8 Print from every data set in a

library
tables SQLOBS

macro
interface
%DO
%UNTIL

9 Extend Example 8 tables Multiple
SELECT

10 Calculation as part of
SELECT

tables SELECT

11 Count observations in a data
set

tables SQLOBS

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 6 of 10

Description

Tables
Used

Other
Features

12 Option capture and reset options GETOPTION
SELECT
stmt
%IF-%THEN
COUNT()

Example 1: Conflicting Variable Attributes

A harsh and dreary reality of working with “real world” data is the
potential for inconsistent attributes. Data sets that should have
identical lengths, type, formats, etc. can have mismatches. A
demographic data set, for example, might store GENDER as
character, length 1 (“M” and “F”). Outsource, laboratory data can
represent the same information as numeric (1 and 2), or
character, length 6 (“Male” and “Female”). Havoc ensues when
the data sets are combined.

Example 1 uses the COLUMNS table to identify inconsistencies
between like-named variables. Regardless of the number of
times a variable appears in WORK library data sets, it should
have the same attribute (we look at length and type here, but
could extend it to format, informat, and label). Thus if we have
more than one value, we have an inconsistency. The Example
sets up two data sets, A and B, then uses SQL to ferret out the
problems.

Example 1 (Part 1)
data a;
x = 'a';
y = 'ppp';
run;

data b;
length y 3;
x = 'xx';
y = 1;
z = '2';
run;

proc sql noprint;
 create table temp as
 select libname, name, length, type
 from dictionary.columns
 where libname = 'WORK'
 group by name
 having count(distinct length) > 1
 | count(distinct type) > 1
 ;
quit;

PRINT procedure output is shown below. It’s not hard to think of
extensions to the program: make it a macro, with parameters for
LIBNAME selection and attributes to compare.

Example 1 (Part 2)
Obs memname name length type

 1 A x 1 char
 2 B x 2 char
 3 B y 3 num
 4 A y 3 char

Example 2: Identify Current Directory

Programs often need to know the name of the directory from
which they are executing. A program could, for instance, need to
identify whether it is running in a test or production environment.
This could be determined from the directory name.

In the following Example, run in Windows, we use the EXTFILES
table to write the directory name (variable XPATH) to global
macro variable CURRENT. We assign a FILENAME before the
SQL code, then clean up and deassign it after SQL terminates.

Once macro %CurrDir completes, the macro variable CURRENT
will be available to the calling program.

Example 2
%macro CurrDir;
 %global Current;
 filename __temp ‘.’;
 proc sql noprint;
 select xpath into :Current
 from dictionary.extfiles
 where fileref = ‘__TEMP’;
 quit;
 filename __temp clear;
%mend

Example 3: Identify All Global Macro Variables

If you have read to this point, you’re probably sold on the idea of
using metadata as often as possible. And if you read this
Example’s title, you’ll say “sure, I can write %put _global_; to list
macro variables, but I’d rather exercise the MACROS table
instead.” With that in mind …

Example 3
proc sql noprint;
 create table _macvars_ as
 select *
 from dictionary.macros
 where offset=0 & scope='GLOBAL'
 order by name
 ;
quit;

Data set _MACVARS_ can be used by any reporting procedure to
display the first 200 characters of all global macro variables (we
use only OFFSET=0). The advantage of this approach compared
to %put _global_ is that it is cleaner. The %PUT statement spews
variable names and values to the SAS Log in a non-obvious
manner. This may be fine for a few macro variables, but when
“lots” are involved, the more precise and controlled presentation
shown in the Example is preferable.

Example 4: Delete Global Macro Variables

Repeated execution of programs in an interactive SAS session
can create a mass of unwanted and/or incorrectly assigned macro
variables. It would be helpful to have a way clean up the session
and delete all global macro variables. Prior to Version 8 and the
introduction of the %SYMDEL statement, this was difficult (but not
impossible). The simplest way was to end the SAS session and
begin a new one. Crude, but effective.

The Example below uses the MACROS table and the macro
variable interface to create a list, stored in macro variable
__GLOB, of all Global macro variables (the list will include
__GLOB). We then pass the list to %SYMDEL.

Example 4
%macro DelMacVar;
 proc sql noprint;
 select name into
 :__glob separated by ‘ ‘
 from dictionary.macros
 where offset = 0 &
 scope = ‘GLOBAL’
 ;
 quit;
 %symdel &__glob.;
%mend;

A simple extension to DelMacVar is the addition of KEEP and/or
DROP parameters, which would control the selection of macro
variables in __GLOB.

Example 5: Use Variables Meeting Criteria

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 7 of 10

This Example demonstrates how the dictionary tables can be
used in the first small step toward generalized code. Rather than
hard-code a list of variable names – AE1, AE2, and so on – we
use the COLUMNS table to identify these variables. Thus if one
data set has AE1 through AE5 and another has AE1 through AE3,
no changes to the program will be needed. In the Example below,
we create a list with the names and use it in an array definition in
a DATA step.

Example 5 (Original)
proc sql noprint;
 select trim(name) into :vars separated by ' '
 from dictionary.columns
 where libname='INDATA' and memname='AE' and
 substr(NAME,1,2)='AE' and type = 'char';
quit;

data test;
 set indata.ae;
 array ae(*) &vars.;
 do i = 1 to dim(ae);
 if ae(i) ^= ‘ ‘ then do;
 NonMissingAE = 1;
 leave;
 end;
 end;
 if NonMissingAE then output;
run;

A few caveats are warranted. First, this type of coding requires
that you know the data – the program assumes that you want any
character variable starting with AE. Be sure that the program
performs the selection correctly. You want to avoid the inclusion
of AESEV1, AERSLT1, and the like. Also consider another data-
driven possibility, that there are no character variables beginning
with AE. The ARRAY statement will be handed a null value of
macro variable VARS, and will fail. A good practice when making
lists is to create a count of elements in the list, then use the count
to control the statements downstream of SQL. This is
demonstrated below.

Example 5 (Revised)
%macro temp;
proc sql noprint;
 select count(*), trim(name)
 into :nVars, :vars separated by ' '
 from dictionary.columns
 where libname='INDATA' and
 memname='AE' and
 substr(NAME,1,2)='AE' and
 type = 'char';
quit;

%if &nVars. > 0 %then %do;
 data test;
 set indata.ae;
 array ae(*) &vars.;
 do i = 1 to dim(ae);
 if ae(i) ^= ‘ ‘ then do;
 NonMissingAE = 1;
 leave;
 end;
 end;
 if NonMissingAE then output;
 run;
 %end;
%mend;

Example 6: Identify Features Incompatible with Transport
Format

Remember the days of limits such as eight-character variable
names, 200 byte character variables, and the like? They live on
in reality as well as our memory, namely in SAS transport files.
Rather than let SAS issue warnings and errors when it encounters
attributes incompatible with the transport standard, we can use

the COLUMNS table to identify problems. In the example, data
set V8 has a number of features that are problematic: variable
HAS GAP has an embedded blank; TOOLONG, not surprisingly,
exceeds the length limit; and LONGLBL has a label that exceeds
the transport file maximum.

The SQL code selects columns from the COLUMNS table,
filtering on characteristics that will be a problem with transport
format. The result set is stored in data set WHOOPS.

Example 6 (Part 1)
data v8;
length 'has gap'n LongVarName clean $1 longlbl 3
 TooLong $1000;
label longlbl = 'This label exceeds the 40 char
 limit!!!!!!!!';
run;

proc sql noprint;
 create table whoops as
 select name, label, length
 from dictionary.columns
 where libname = 'WORK' and memname = 'V8' &
 (index(trim(name), ' ') > 0 |
 length(name) > 8 |
 length(label) > 40 |
 length > 200
) ;

PRINT procedure output of data set WHOOPS is shown below.
Note that this use of the dictionary data is very basic. It’s not hard
to think of extensions to the program. We could, for example,
make it into a macro, passing it a one or two-level data set name.

Example 6 (Part 2)
name label
has gap
LongVarName
longlbl This label exceeds the 40 char
 limit!!!!!!!!
TooLong

name length
has gap 1
LongVarName 1
longlbl 3
TooLong 1000

Example 7: Generate Code from SQL

And then there are times when even the metadata isn’t enough.
Such is the case with transport files, where data sets have to be
referenced individually, rather than collectively (a LIBNAME must
point to a specific dataset, rather than a directory). You could
manually create the requisite LIBNAME and CONTENTS
procedure statements to get what you need, maybe even making
these into a macro that you could invoke for each data set.

A non-obvious but effective approach is shown in Example 7. We
identify the transport files programmatically, via a DOS command
(DIR). We then process the command’s output, creating data set
XPT_FILES, with variable MEMNAME. Once this is done, we can
create the LIBNAME and other statements to process each data
set using SQL. The SELECT statement concatenates literals
containing SAS statements and variables containing data set
names. The result is stored in macro variable CONTENTS.

Example 7 (Part 1)
filename xDir pipe ‘dir /b /on "c:\tmp*.xpt" ‘;
data XPT_files;
 infile xDir;
 input;
 if index(_infile_, '.') then do;
 memname = scan(_infile_, 1, '.');
 output;
 end;

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 8 of 10

run;

proc sql noprint;
 select "libname TRANS sasv5xpt 'c:\temp\"
 || trim(memname)
 || ".xpt'; proc contents data=trans."
 || trim(memname)
 || ";run;"
 into :contents separated by ' '
 from XPT_files
 ;
quit;
&contents.;
If data sets AE and DEMOG were in the directory, the following
would be the value of macro variable CONTENTS.

Example 7 (Part 2)
libname TRANS sasv5xpt 'c:\temp\ae.xpt'; proc
contents data=trans.ae;run; libname TRANS
sasv5xpt 'c:\temp\dmg.xpt'; proc contents
data=trans.dmg;run;
The Example doesn’t use dictionary tables, but is useful for
demonstrating the power of the SELECT statement.

Example 8: Print from Every Data Set in a Library

Just as we went to some length in Example 7 to avoid manually
writing statements for each data set in a library, here we also
automatically generate code. This time, we use the TABLES
table, identifying data sets in a library and printing up to 10
observations from each data set. A priori knowledge of the data
set names is not needed. The macro gets this information from
the metadata.

Example 8
libname inmeta 'J:\Client\Project\DATA\DERIVE';

%Macro Printit ;
 proc sql noprint;
 select memname into :dsns separated by ' '
 from dictionary.tables
 where libname="INMETA";
 quit;

 %put &sqlobs. data sets in INMETA are: &dsns ;

 %if &sqlobs. = 0 %then %do;
 %put Nothing to do!;
 %goto bottom;
 %end;

 %let i =1 ;
 %do %until (%scan(&dsns,&i)=);
 %let dsn = %scan(&dsns,&i);

 proc print data= inmeta.&dsn(obs=10);
 title2 "First 10 records from &DSN" ;
 Run;
 %let i = %eval(&i + 1);
 %end;

 %bottom: ;
%Mend;

As in previous Examples, it’s interesting to consider
improvements that we could make. An obvious tweak is
controlling the number of observations to print. This could be
done via a parameter defaulting to, say, 10 observations. A more
significant improvement would be changes to the handling of
empty (0-observation) data sets. Currently, if a data set is present
but empty, nothing will be printed. We could count the
observations in each data set (macro variable DSN) and print the
data or write a message to the output file saying the data set was
empty.

Example 9: Enhance Example 8

The previous Example was helpful, since it quickly listed
observations from a data set, giving a feel for its contents. A
more practical, operational example follows. It creates two lists,
one from the TABLES table, as before, and one from a data set
with cardiovascular disease (CVD) indicators. Macro variable IDS
is a comma-separated list of patients with a CVD history. This list
is used as a filter for the PRINT procedure executed within the
macro %DO loop. Notice that we code multiple SELECT
statements in SQL; it is not necessary to invoke SQL separately.

Example 9
libname VACC 'S:\RHO\VASOCOR\VVS_Acc\data\crf' ;

proc sql noprint;
 select quote(trim(id))
 into :ids separated by ','
 from vacc.riskmstr
 where CVDYN='Y'
 ;
 select memname into :dsns separated by ' '
 from dictionary.tables
 where libname="VACC"
 ;
quit;

%put ids with CVD are: &ids ;
%put data set in VACC are: &dsns ;

%Macro printit ;
 %let i =1 ;
 %do %until (%scan(&dsns,&i)=) ;
 %let dsn = %scan(&dsns,&i);
 proc print data= Vacc.&dsn ;
 where id in(&ids) ;
 title2 "Records with CVD from &DSN.";
 run;
 %let i = %eval(&i + 1);
 %end;
%mend;

Example 10: Calculation As Part of an Expression

We have already seen a use of the SELECT statement for
creating groups of executable statements (Example 7). To
emphasize the statement’s power, and its importance in reducing
the amount of code that’s written and maintained, we present
another example. Using the TABLES table and a knowledge of
our system’s disk sector size, we compute the size of each
member in a library. Variable SIZEMB is created within SQL,
ready to use from data set SIZES. Since we create the variable
straight from the table, no post-processing DATA step is required.
You could, of course, process SASHELP.VTABLE in a DATA step
to achieve the same result, but recall earlier comments about the
typically less-efficient view processing.

Example 10
proc sql noprint;
 create table sizes as
 select memname,
 (npage * 16384) / 1048576 as sizeMB
 /* divide by 1,024 for KB */
 /* divide by 1,048,576 for MB */
 from dictionary.tables
 where libname = 'WORK';
quit;

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 9 of 10

Example 11: Count Observations in a Data Set

A data set’s “n” is one of its most fundamental characteristics, and
one that is often needed for decision-making in utility programs.
This Example presents one of many possible approaches to
identifying the count. The user passes the one or two-level name
of the data set and, optionally, the name of the global macro
variable that will hold the count. The variable is populated using
the TABLES table, and is reset to -1 if the data set was not found.
The COUNT variable, therefore, communicates whether the data
set exists (value >= 0) and if it is populated (> 0).

Example 11 (Part 1)
%macro countobs(datastor=, count=_count_);
 %local dataok;
 %global &count.;

 %let datastor = %upcase(&datastor);
 %if %index(&datastor, .) > 0 %then %do;
 %let libname = %scan(&datastor,1,.);
 %let memname = %scan(&datastor,2,.);
 %end;
 %else %do;
 %let libname = WORK;
 %let memname = &datastor;
 %end;
 proc sql noprint;
 select nobs into :&count
 from dictionary.tables
 where libname="&libname." &
 memname="&memname." ;
 quit;
 %if &sqlobs. = 0 %then %let &count. = -1;
 %put COUNTOBS: Count variable
 %upcase(&count)=%left(&&&count);
%mend;
The Example below uses COUNTOBS, and takes full advantage
of the information contained in the macro variable. If it has a
value greater than 0, we print the data set. If the value is 0, we
write a message to the print file. Finally, if the value is -1, we
write to the print file, saying it could not be located. Rather than
just not print empty or missing data sets, we take the time to say
why we didn’t print anything. The cost of extra macro language
coding is far outweighed by the benefits of improved user
understanding of the data.

Example 11 (Part 2)
%macro report(data=);
 %countobs(datastor=&data., count=n);
 %if &n. > 0 %then %do;
 proc print data=&data.;
 title “Data Set &data.”;
 run;
 %end;
 %else %if &n. = 0 %then %do;
 data _null_;
 file print;
 put "&data. was empty!";
 run;
 %end;
 %else %if &n. = -1 %then %do;
 data _null_;
 file print;
 put "&data. could not be “
 “located!";
 run;
 %end;
%mend report;

Example 12: Option Capture and Reset

In the “Table and View Organization” section, above, we noted the
power of the GETOPTION function’s ability to store keyword
options (those of the form option=value). The following Example

takes advantage of both GETOPTION and the OPTIONS table. It
is a pared-down version of a larger environment-resetting utility.

The macro is recognition of the need for utility programs to be
good “guests” in the programs that call them. Rather than adjust
centering, page dimensions, error-handling, and other settings
within a macro and then return to the calling program, it would be
desirable to make the changes as needed, and then restore them
to their original settings.

This is accomplished by calling the macro twice: at the start of a
utility / macro and at its termination. When called at the start
(ACTION=START), it creates data set __OPT_START__, which is
essentially a snapshot of all current options, stored in a form
suitable for inclusion in an OPTIONS statement later on. If
RESET is called at the end of a utility (ACTION=END), we use
SQL to compare the current option settings to those at the
beginning, as stored in __OPT_START__. The differences are
stored in macro variable __SETTINGS. If the count of
observations with differences (_NOPTS) is non-zero, we insert an
OPTIONS statement with __SETTINGS.

Example 12 (Part 1)
%Macro Reset(action=);
 %let action = %upcase(&action.);

 %if &action. = START %then %do;
 proc sql noprint;
 create table __opt_start__ as
 select optname,
 setting as original_setting,
 getoption(optname, 'keyword')
 as original_keyword
 from dictionary.options
 ;
 %end;

 %if &action. = END %then %do;
 proc sql noprint;
 select count(*),
 e.optname,
 trim(e.optname) as trimname,
 getoption(e.optname, 'keyword')
 as setting
 into :_Nopts,
 :__temp,
 :__names separated by ' ',
 :__settings separated by ' '
 from dictionary.options as e,
 __opt_start__ as s
 where s.original_setting ^= e.setting &
 s.optname = e.optname
 ;
 quit;

 %if &_Nopts. > 0 %then %do;
 %put Restore values of [&__names.];
 options &__settings.;
 %end;
 %end;

%mend;

A representative calling sequence for the macro is shown below.

Example 12 (Part 2)
%macro PrettyPrint(data=);
 %reset(action=start);

 options leftmargin=1in rightmargin=1in
 nodate nonumber
 dkricond=nowarn ;
 … other statements …

 %reset(action=end);
%mend;

Dictionary Tables – Essential Tools for Serious Applications

© CodeCrafters, Inc. Page 10 of 10

CONCLUSION
The dictionary tables provide straightforward access to a wealth of
information about the SAS environment. They are best utilized
when you take the time to understand their contents and
attributes, develop expertise with SQL and the macro language,
and have a generalized application to work on. The up-front
investment of your time is well worth the payoff of having solid,
elegant, and generalized applications.

AUTHOR CONTACT
Your comments and questions are valued and welcome. Address
correspondence to:

Frank DiIorio: frank@CodeCraftersInc.com
Jeff Abolafia: jabolafi@rhoworld.com

APPENDIX A: OTHER TABLES AND VIEWS

 libname $8 Library name [upper case]
 memname $32 Member name [upper case]
 memtype $8 Member type [CATALOG]
 objname $32 Object name [upper case]
 objtype $8 Object type [SCL|FRAME|FORMAT|…]

objdesc $256 Object description
created num Date created [DATETIME informat, format]
modified num Date modified [DATETIME informat, format]
alias $8 Object alias [upper case]
level num Library concatenation level [0, 1, 2, …]

dictionary.catalogs
sashelp.vcatalg

 memname $32 Member name
memlabel $256 Member label

 name $32 Column name
type $4 Column type
length num Column length
npos num Column position
varnum num Column number in table
format $49 Column format
informat $49 Column informat

dictionary.dictionaries
sashelp.vdctnry

 engine $8 Engine name [upper case]
alias $8 Alias [upper case]
description $40 Description
preferred $3 Preferred? [yes|no]
properties $1024 Engine dialog properties

dictionary.engines
sashelp.vengine

 libname $8 Library name
 memname $32 Member name
 style $32 Style name

crdate num Date created [DATETIME informat, format]

dictionary.styles
sashelp.vstyle

 libname $8 Library name [upper case] [source=’C’]
 memname $32 Member name [upper case] [source=’C’]
 path $1024 Path name [case preserved] [source=’U’]

 objname $32 Object name [upper case] [e.g. GROUP,
TYPE] [source=’U’]

 fmtname $32 Format name [upper case] [e.g., GROUP,
$TYPE] [no decimal point]

 fmttype $1 Format type [F (format) I (informat)]

source $1 Format source [U (user) B (built-in) C (from a
catalog, i.e., created by PROC FORMAT)]

minw num Minimum width
mind num Minimum decimal width
maxw num Maximum width
maxd num Maximum decimal width
defw num Default width
defd num Default decimal width

dictionary.formats
sashelp.vformat

 libname $8 Library name [upper case]
 memname $32 Member name [upper case]
 memtype $8 Member type [DATA]
 name $32 Column name [case varies]

idxusage $9 Column index type [COMPOSITE|SIMPLE]
 indxname $32 Index name [upper case]

indxpos num [Position of column in concatenated key |
missing if not concatenated key]

nomiss $3 NOMISS option [yes|blank]
unique $3 UNIQUE option [yes|blank]

dictionary.indexes
sashelp.vindex

 libname $8 Library name [upper case]
engine $8 Engine name

 path $1024 Path name
 level num Library concatenation level [0, 1, 2, …]

fileformat $8 Default file format
readonly $3 Read only? [no|yes]
sequential $3 Sequential? [no|yes]
sysdesc $1024 System information description
sysname $1024 System information name
sysvalue $1024 System information value

dictionary.libnames
sashelp.vlibnam

 libname $8 Library name [upper case]
 memname $32 Member name [upper case]

memtype $8 Member type [VIEW]
engine $8 Engine name [SASESQL|SASDSV| …]

dictionary.views
sashelp.vview

